İçeriğe atla

Almaşık seri testi

Almaşık seri testi (Leibniz testi, Leibniz kriteri veya alterne seri testi), matematikte sonsuz bir serinin yakınsaklığını göstermek için kullanılan bir yöntemdir. Gottfried Leibniz tarafından keşfedildiği için Leibniz ismiyle de atfedilir.

biçimindeki, bütün an 'lerin pozitif veya 0 olduğu bir seriye almaşık seri denilir. an dizisi 0'a yakınsarsa ve her an, an-1 'den küçükse (yani an dizisi monoton azalan ise), o zaman seri yakınsar. Eğer L, serinin toplamıysa yani

ise, o zaman

kısmi toplamı L 'ye

hatasıyla yaklaşır.

Bir serinin kısmi toplamları olan Sk 'lerin bu son koşulu seri almaşık olmadan da sağlaması gayet de mümkündür. Apaçık bir örnek için

serisi ele alınabilir.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

Seri, bir dizi olmak üzere toplamı. Bir seri kısaca şeklinde gösterilir. Bir serinin bütün terimleri pozitifse, seriye pozitif terimli seri, negatifse negatif terimli seri; bir pozitif bir negatif ise almaşık seri veya alterne seri adı verilir. , , , ..., toplamlarına serinin kısmi toplamları, dizisine de kısmi toplamlar dizisi denir. Bir seri dizisi olarak da tanımlanabilir. Bu dizi yakınsak ise seri de yakınsaktır.

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

<span class="mw-page-title-main">Laurent serisi</span>

Matematikte karmaşık bir fonksiyonun Laurent serisi bu fonksiyonun negatif dereceli terimler de içeren kuvvet serisi temsilidir. Karmaşık fonksiyonların Taylor serileri açılımının mümkün olmadığı durumlarda bu fonksiyonları açıklamak için de kullanılabilir. Laurent serisi ilk defa 1843'te Pierre Alphonse Laurent tarafından yayınlanmış ve bu matematikçinin adını almıştır. Karl Weierstrass 1841'de bu seriyi bulmuş olabilir ancak o zamanda ilk yayınlayan olamamıştır.

Matematikte Abel testi sonsuz bir serinin yakınsaklığını belirlemek için kullanılan bir yöntemdir. Bu test matematikçi Niels Abel'e ithafen bu şekilde isimlendirilmiştir. Abel testinin farklı iki çeşidi vardır – birisi gerçel sayıların serileriyle kullanılır; diğeri ise karmaşık analizdeki kuvvet serileriyle kullanılır.

Matematikte Dirichlet testi, bir serinin yakınsaklığını belirlemek için kullanılan bir yöntemdir ve matematikçi Johann Dirichlet'nin arkasından isimlendirilmiştir.

<span class="mw-page-title-main">Oran testi</span>

Matematikte oran testi, terimleri gerçel ya da karmaşık sayı olan bir

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Harmonik seriler</span>

Harmonik seri ıraksak bir seridir, harmonik sözcüğü ise müzikten devşirilmiştir.

Matematikte ıraksak seri yakınsak olmayan bir sonsuz seridir. Bu, serinin kısmi toplamlarının herhangi bir limit değeri olmadığı anlamına gelmektedir.

Matematiksel çözümlemede Cesàro toplamı bir sonsuz diziye toplam değeri atamanın farklı bir yoludur. Bir dizi A toplamına yakınsıyorsa bu dizinin Cesàro toplamı da A olur. Cesàro toplamı, yakınsamayan dizilere de değer atayabilmektedir. Ne var ki, artı sonsuz değerine yönelen bir dizi hiçbir koşulda sonlu bir toplam değerine sahip olamayacaktır.

Matematikte Dirichlet serisi

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Matematikte almaşık seri,

<span class="mw-page-title-main">Kuvvet serisi</span>

Matematikte kuvvet serisi

Matematikte Euler sayıları, Taylor serisi açılımıyla tanımlanan bir En tam sayı dizisidir..

Matematikte eğer bir serinin terimlerinin mutlak değerlerinin toplamı yakınsak ise bu seri mutlak yakınsak olur. Daha iyi anlatmak gerekirse, gerçek veya karmaşık bir seri olan serisinin terimlerinin mutlak değerlerinden oluşan serisi yakınsak ise bu seri mutlak yakınsaktır. Benzer şekilde eğer bir fonksiyonun has olmayan integrali,, yine bu fonksiyonun mutlak değerinin integrali olan sağlanır ise bu integral mutlak yakınsaktır.