İçeriğe atla

Almaşık seri

Matematikte almaşık seri,

biçimli bir sonsuz seridir, burada her n için an ≥ 0 (veya an ≤ 0). Bu tür bir sonsuz toplam almaşık toplam olarak adlandırılır. Eğer an terimleri monoton şekilde sıfıra yakınsıyorsa, almaşık seri yakınsar. Bir almaşık seriyi ilk n terimi için kısmi toplamına denk saymaktan kaynaklanan E hatası |E|<|an+1| olarak verilir.

Bir serinin yakınsaması için yeterli bir şart, onun mutlak yakınsama göstermesidir. Ancak, bu genelde fazla kuvvetli bir şarttır, bu gerekli değildir. Örneğin, şu harmonik seri

ıraksar, buna karşın onun almaşık biçimi

2'nin doğal logaritmasına yakınsar.

İlgili Araştırma Makaleleri

Seri, bir dizi olmak üzere toplamı. Bir seri kısaca şeklinde gösterilir. Bir serinin bütün terimleri pozitifse, seriye pozitif terimli seri, negatifse negatif terimli seri; bir pozitif bir negatif ise almaşık seri veya alterne seri adı verilir. , , , ..., toplamlarına serinin kısmi toplamları, dizisine de kısmi toplamlar dizisi denir. Bir seri dizisi olarak da tanımlanabilir. Bu dizi yakınsak ise seri de yakınsaktır.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Laurent serisi</span>

Matematikte karmaşık bir fonksiyonun Laurent serisi bu fonksiyonun negatif dereceli terimler de içeren kuvvet serisi temsilidir. Karmaşık fonksiyonların Taylor serileri açılımının mümkün olmadığı durumlarda bu fonksiyonları açıklamak için de kullanılabilir. Laurent serisi ilk defa 1843'te Pierre Alphonse Laurent tarafından yayınlanmış ve bu matematikçinin adını almıştır. Karl Weierstrass 1841'de bu seriyi bulmuş olabilir ancak o zamanda ilk yayınlayan olamamıştır.

Matematikte Cauchy yoğunlaşma testi sonsuz seriler için kullanılan standard bir yakınsaklık testidir. Pozitif, monoton azalan bir f(n) dizisi için

Matematikte Abel testi sonsuz bir serinin yakınsaklığını belirlemek için kullanılan bir yöntemdir. Bu test matematikçi Niels Abel'e ithafen bu şekilde isimlendirilmiştir. Abel testinin farklı iki çeşidi vardır – birisi gerçel sayıların serileriyle kullanılır; diğeri ise karmaşık analizdeki kuvvet serileriyle kullanılır.

Almaşık seri testi, matematikte sonsuz bir serinin yakınsaklığını göstermek için kullanılan bir yöntemdir. Gottfried Leibniz tarafından keşfedildiği için Leibniz ismiyle de atfedilir.

Matematikte Dirichlet testi, bir serinin yakınsaklığını belirlemek için kullanılan bir yöntemdir ve matematikçi Johann Dirichlet'nin arkasından isimlendirilmiştir.

<span class="mw-page-title-main">İntegral testi</span>

Matematikte integral testi veya bir diğer deyişle yakınsaklık için integral testi, terimleri negatif olmayan sonsuz serilerin yakınsaklığını belirlemek için kullanılan bir yöntemdir. Bu testin erken bir versiyonu 14. yüzyılda Hint matematikçi Madhava ve takipçileri tarafından bulunmuştur. Avrupa'da ise Maclaurin ve Cauchy tarafından geliştirilmiş olup aynı zamanda Maclaurin-Cauchy testi olarak da bilinir.

<span class="mw-page-title-main">Oran testi</span>

Matematikte oran testi, terimleri gerçel ya da karmaşık sayı olan bir

Matematikte terim testi, ıraksaklık testi veya ıraksaklık için n'inci terim testi bir sonsuz serinin ıraksaklığını belirlemenin basit bir yöntemidir:

<span class="mw-page-title-main">Harmonik seriler</span>

Harmonik seri ıraksak bir seridir, harmonik sözcüğü ise müzikten devşirilmiştir.

Matematikte ıraksak seri yakınsak olmayan bir sonsuz seridir. Bu, serinin kısmi toplamlarının herhangi bir limit değeri olmadığı anlamına gelmektedir.

Matematiksel çözümlemede Cesàro toplamı bir sonsuz diziye toplam değeri atamanın farklı bir yoludur. Bir dizi A toplamına yakınsıyorsa bu dizinin Cesàro toplamı da A olur. Cesàro toplamı, yakınsamayan dizilere de değer atayabilmektedir. Ne var ki, artı sonsuz değerine yönelen bir dizi hiçbir koşulda sonlu bir toplam değerine sahip olamayacaktır.

Euler toplamı, yakınsak ve ıraksak diziler için kullanılan bir toplam yöntemidir. Bir Σan dizisinin Euler dönüşümü bir değere yakınsıyorsa bu değer Euler toplamı olarak adlandırılır.

Matematikte Dirichlet serisi

<span class="mw-page-title-main">Kuvvet serisi</span>

Matematikte kuvvet serisi

Matematikte, bir kuvvet serisinin yakınsaklık yarıçapı negatif olmayan bir gerçel sayı veya ∞ olan bir niceliktir. Verilen bir kuvvet serisinin yakınsaklık yarıçapı serinin yakınsak olduğu bölgeyi gösterir. Bu yakınsaklık yarıçapının içinde kalan bölgede, kuvvet serisi mutlak yakınsak ve aynı zamanda tıkız yakınsaktır. Seri yakınsak ise, o zaman bu seri bir analitik fonksiyonun bu yakınsaklık yarıçapının belirlediği bölgenin içinde kalan bölgede yakınsayan bir Taylor serisidir.

Matematikte eğer bir serinin terimlerinin mutlak değerlerinin toplamı yakınsak ise bu seri mutlak yakınsak olur. Daha iyi anlatmak gerekirse, gerçek veya karmaşık bir seri olan serisinin terimlerinin mutlak değerlerinden oluşan serisi yakınsak ise bu seri mutlak yakınsaktır. Benzer şekilde eğer bir fonksiyonun has olmayan integrali,, yine bu fonksiyonun mutlak değerinin integrali olan sağlanır ise bu integral mutlak yakınsaktır.

Matematikte bir seri veya integral mutlak yakınsak olmayıp halen yakınsak ise koşullu yakınsak olur.