Bir alkaloid olan asetilkolin tanımlanan ilk nörotransmitterdir. Merkezî sinir sisteminde yer alan bir kimyasal nörotransmitter (iletici) olmasının yanı sıra birçok organizmanın parasempatik sinir sisteminde yer alır.
Nöronlar arasında veya bir nöron ile başka tür bir hücre arasında iletişimi sağlayan kimyasallara nörotransmitter veya nörotransmiter denir. Sinir sistemi boyunca sinirsel sinyaller bu kimyasal taşıyıcılar yardımıyla iletilir.
Retina (latince:rete) ya da ağkatman çoğu omurgalı ve bazı yumuşakçaların gözünün en içindeki görmeyi sağlayan ışığa ve renge duyarlı hücrelerin bulunduğu göz doku tabakasıdır. Gözün optiği, retinadaki görsel dünyanın odaklanmış iki boyutlu bir görüntü oluşturur ve bu görüntüyü beyne elektriksel sinir uyarılarına çevirerek görsel algı oluşturur. Retina, bir kameradaki film veya görüntü sensörü 'ne benzer bir iş yapar.
Sinaps, nöronların diğer nöronlara ya da kas veya salgı bezleri gibi nöron olmayan hücrelere mesaj iletmesine olanak tanıyan özelleşmiş bağlantı noktaları. Bir motor nöron ile kas hücresi arasındaki kimyasal sinaps, aynı zamanda neuromuscular junction nöromusküler bağlantı olarak adlandırılır.
Sinir hücresi ya da nöron sinir sisteminin temel fonksiyonel birimidir. Başlıca işlevi bilgi transferini gerçekleştirmektir. İnsan sinir sisteminde yaklaşık olarak 100 milyar nöron olduğu tahmin edilmektedir. Normal bir sinir hücresi 50.000'den 250.000'e kadar başka nöronlarla bağlantılıdır. Yaptıkları özelleşmiş işlere bağlı olarak farklı şekillerde ve çeşitlerde olabilirler. Nöronların büyük çoğunluğu dört farklı yapıya sahiptir: Soma, dendritler, akson ve terminal butonlar. Soma bölgesinde çekirdek (nucleus) ve hücrenin yaşamsal işlevlerini sağlayan mekanizma bulunur. Dendiritler ise isimlerini Yunanca bir sözcük olan dendrondan almışlardır. Bu şekilde isimlendirilmelerinin sebebi şekillerinin bir ağaca benzemesidir. Dendiritler nöral iletişimin önemli alıcılarıdır. Bir nörondan diğerine geçen mesajlar, mesajı yollayan hücrenin terminal butonlarıyla mesajı alan hücrenin dendirit membranı ya da soma bölümü arasındaki birleşme yerleri olan sinapslar aracılığıyla iletilir/transfer edilir. Sinapslar işlevlerinden yola çıkılarak isimlerini Yunancada "bir araya gelmek" anlamındaki sunaptein sözcüğünden almışlardır. Sinapstaki iletişim terminal butondan öteki hücrenin membranına kadar olmak üzere tek yönlü bir şekilde gerçekleşir. Nöronun bir diğer bölümü olan akson, çoğu kez miyelin kılıfı ile kaplı uzun ve ince bir tüp şeklindedir. Aksonun temel işlevi bilgiyi hücre gövdesinden terminal butonlara taşımaktır. Aksonun taşıdığı bu temel mesaj aksiyon potansiyeli olarak adlandırılır. Aksiyon potansiyeli, kısa bir nabız atışına benzeyen elektriksel/kimyasal bir olaydır. Bütün aksonlardaki aksiyon potansiyeli her zaman aynı ölçüde ve hızdadır. Aksiyon potansiyeli aksonun dallarına ulaştığında bölünmesine rağmen ölçüsünü kaybetmez. Başka bir deyişle her akson dalı tam gücüyle bir aksiyon potansiyeli alır. Nöronlar aksonların ve dendiritlerin somadan çıkışlarına göre üçe ayrılır. Bunlardan multipolar nöron merkezi sinir sisteminde en çok bulunan bilindik nöron tipidir. Bu tip nöronlar sadece bir akson çıkışına sahipken çok sayıda dendirite sahiptir. Bipolar nöronlar bir akson ve bir dendirit ağacına sahiptir. Duyusal nöronlar genellikle bipolar nöronlardır. Bipolar nöronların dendiritleri duyusal verileri merkezi sinir sistemine iletirler. Diğer tip sinir hücreleri ise unipolar nöronlardır. Bu nöronların hücre gövdesinden çıkan ve kısa mesafede ayrılan tek bir sapı vardır. Unipolar nöronlar da bipolar nöronların yaptığı gibi duyusal verileri merkezi sinir sistemine taşımakla görevlidir. Terminal butonlar aksonların ince dallarının ucunda bulunan küçük yumrulardır. Terminal butonlar bir aksiyon potansiyeli onlara ulaştığında, nörotransmitter adı verilen kimyasalları salıverir. Nörotransmitterler alıcı hücreyi uyarır (excitation) veya engeller (inhibition). Bu şekilde diğer hücrenin aksonunda bir aksiyon potansiyeli oluşup oluşmayacağını belirler.
Dendrit, nöronda diğer nörondan alınan elektrokimyasal uyartının somaya iletilmesini sağlayan, dal benzeri yapılardır. Elektriksel uyartı dendrite art arda dizili nöronlar ve aralarındaki sinapslardan geçerek ulaşır. Dendritler uyartının sinapsdan alınması ve nöronunda oluşacak aksiyon potansiyelinin büyüklüğünü belirlemede etkin bir rolü vardır. Son araştırmalarda, dendritlerde de aksiyon potansiyeli görülebileceği ve dendritlerin nörotransmitter madde salgılayabileceği bulunmuştur.
Kas kasılması veya kontraksiyon, kas dokusunda bulunan aktin ve miyozin arasındaki çapraz köprülerin kullanılması ile bir gerginlik yaratılması. Bu gerginlik durumunda, kas uzama, kısalma gösterdiği gibi boyutu değişmeyebilir. İsteğe bağlı kasılma merkezi sinir sistemi tarafından kontrol edilir. Beyinde oluşturulan aksiyon potansiyeli birçok kas fiberi ile bağlantı kurmuş motor nöron ile kasa aktarılır. Bazı refleks durumlarında ise kasılma sinyali omurilikten gelebilir. kalp kası veya düz kaslarda gözlemlenen istemsiz kasılmalar, kasın kendi kendini uyarması ile meydana gelir.
Akson, bir sinir lifi olarak da bilinir, bir sinir hücresinin (nöronun) ince, uzun bir çıkıntısıdır. Sinir hücresinin gövdesindeki elektriksel uyarıları uzağa iletir. Aksonun işlevi bilgiyi farklı sinir hücrelerine, kaslara, bezlere iletmektir. Dokunmak ve sıcaklık algılama işlemlerini gerçekleştiren Pseudounipolar nöronlar gibi bazı duyu nöronlarında, elektriksel uyarılar, aksonun çeperinden hücrenin gövdesine doğru, oradan da aynı aksonun başka dalları vasıtasıyla omuriliğe gönderilir. Akson uyumsuzluğu, kalıtsal ve edinsel nörolojik hastalıklara neden olabilir. Bu hastalıklar hem merkezi hem de çevresel sinir sistemlerindeki nöronları etkileyebilir.
Sinir dokusu, sinir sisteminin ana bileşenidir - beyin, omurilik ve sinirler - vücut işlevlerinin ayarlar ve kontrol eder. Uyartıları (impuls) ileten sinir hücrelerinden (nöron) ve sinir uyartılarının yayılmasına yardımcı olan ve nöronlara besin taşıyan nöroglialardan oluşmuştur.
Elektrofizyolojide, aksiyon potansiyel, bir hücrenin elektriksel zar potansiyelinin kısa bir süre içinde aniden yükselmesi ve azalmasıdır. Aksiyon potansiyeli, zar potansiyeli olarak adlandırılan hayvan hücrelerinde birkaç türde meydana gelir. Bunlar, sinir hücreleri (nöron), kas hücreleri ve endokrin hücreler ve bazı bitki hücreleridir. Sinir hücrelerinde, hücreler arasındaki iletişimde başrol oynar. Diğer tür hücrelerde ana işlevi hücreler arası süreçleri etkinleştirmektir. Örneğin kas hücrelerinde bir aksiyon potansiyel, kasılmaya yol açan olaylar zincirinin ilk halkasıdır. Pankreastaki beta hücrelerinde, insülinin salınmasını sağlar. Sinir hücrelerindeki aksiyon potansiyeli ve aksiyon potansiyelinin geçici sıklığı "çivi treni" olarak adlandırılan bir sinir hücresi tarafından oluşturulur. Aksiyon potansiyelini yayan sinir hücresine "ateş" denir.
Nörolojide motor nöron terimi merkezi sinir sisteminde (MSS) bulunan sinir hücrelerini (nöron) sınıflandırır ve kasları doğrudan veya dolaylı olarak kontrol eder. MSS'deki aksonlar bilgiyi diğer sinir hücrelerine iletir. Motor nöronlar, hareketi gerçekleştirmek için omurilikten kaslara sinyal iletirler.
Alt motor nöron (AMN), 1. Alfa motordan itibaren başlayıp beyinsapı ve omuriliği kas liflerine bağlayan, üst motor nöronlardaki sinir uyartılarını kaslara ileten bir tür motor nörondur. Bir AMN'nin akson uçları bir motorda (kas) biter.
Üst motor nöronlar (ÜMN), serebral korteks veya beyinsapının motor bölgesinde meydana gelen bir tür motor nörondur ve motor bilgisini son ortak ağa taşır. Bunlar hedef kası doğrudan uyarmakla sorumlu değildir. Ana motor nöronlar istemli hareket sağlar, primer motor korteksin katman V içinde uzanır ve Betz hücreleri olarak adlandırılır. Bu sinir hücrelerinin hücre gövdeleri, beyindeki en büyük gövdelerden bazılarıdır ve yaklaşık 100 μm çapındadır.
Sinir, çevresel sinir sistemindeki kapalı, kablo benzeri sinir lifleri demetidir.
Soma, perikaryon, nörositon ya da hücre gövdesi, sinir hücresinin gövde kısmıdır ve merkezinde çekirdek bulunur. Sinir hücresinin birçok özel türü vardır. Büyüklükleri yaklaşık 5 mikrometre ile 10 milimetre arasında değişir. En küçük ve en büyük sinir hücreleri sırasıyla omurgasızlar ve omurgalılarda bulunur.
Olfaktör bulbus omurgalı ön beyninde koku almada görevli sinir yapısıdır. Koku bilgilerini işlenmek üzere duygu, hafıza ve öğrenmede rol oynayan amigdala, orbitofrontal korteks (OFC) ve hipokampusa gönderir. Bulbus ana koku alma bulbusu ve yardımcı koku alma bulbusu olmak üzere iki ayrı yapıya bölünmüştür.
Nörofarmakoloji, ilaçların sinir sistemindeki hücresel işlevini ve davranışı etkileyen nöral mekanizmaları araştıran bilim dalıdır. Nörofarmakolojinin davranışsal ve moleküler olmak üzere iki ana alt dalı vardır. Davranışsal nörofarmakoloji, ilaç bağımlılığı ve bağımlılığının insan beynini nasıl etkilediğinin incelenmesi de dahil olmak üzere ilaçların insan davranışını nasıl etkilediğine odaklanır. Moleküler nörofarmakoloji, nöronların ve nörokimyasal etkileşimleri incelemenin yanı sıra nörolojik fonksiyon üzerinde faydalı etkileri olan ilaçların geliştirilmesi genel amacını taşır. Bu alanların her ikisi de yakından bağlantılıdır, çünkü her ikisi de merkezi ve periferik sinir sistemlerindeki nörotransmitterler, nöropeptitler, nörohormonlar, nöromodülatörler, enzimler, ikinci haberciler, ortak taşıyıcılar, iyon kanalları ve reseptör proteinlerinin etkileşimleri ile ilgilidir. Bu etkileşimleri inceleyen araştırmacılar, ağrı, Parkinson hastalığı ve Alzheimer hastalığı gibi nörodejeneratif hastalıklar, psikolojik bozukluklar, bağımlılık gibi birçok farklı nörolojik bozukluğu tedavi etmek için ilaçlar geliştirirler.
Olfaktör sinir kraniyel sinirlerden birincisi olarak kabul edilen sinir. Özel visseral afferent bir duyu olan koku duyusunu burundan alıp koku korteksine (rhinencephalon) taşır.
Sinir sistemlerinin evrimi, hayvanlarda sinir sistemlerinin ilk gelişimine kadar uzanır. Nöronlar, hareketli tek hücreli ve kolonyal ökaryotlarda bulunan aksiyon potansiyellerinin mekanizmasını uyarlayarak çok hücreli hayvanlarda özel elektrik sinyal hücreleri olarak geliştirildi. Karmaşık protozoalarda bulunanlar gibi birçok ilkel sistem, hareketlilik ve hayatta kalmak için gerekli diğer yönler için elektriksel olmayan sinyalleme kullanır. Veriler, mesajlaşma için kimyasal bir gradyan kullanan bu sistemlerin bugün bilinen elektrik sinyal hücrelerine dönüştüğünü gösteriyor.
Fizyolojide uyaran, bir organizmanın iç veya dış çevresinin fiziksel veya kimyasal yapısında tespit edilebilir bir değişikliktir. Bir organizmanın veya organın uygun bir tepki verebilmesi için dış uyaranları tespit etme yeteneğine duyarlılık (uyarılabilirlik) denir. Duyusal reseptörler, deride bulunan dokunma reseptörleri veya gözdeki ışık reseptörlerinde olduğu gibi vücudun dışından ve kemoreseptörler ve mekanoreseptörlerde olduğu gibi vücudun içinden bilgi alabilir. Bir uyaran bir duyusal reseptör tarafından algılandığında, uyaran transdüksiyonu yoluyla bir refleks ortaya çıkarabilir. Bir iç uyaran genellikle homeostatik kontrol sisteminin ilk bileşenidir. Dış uyaranlar, savaş ya da kaç yanıtında olduğu gibi vücutta sistemik yanıtlar üretebilir. Bir uyaranın yüksek olasılıkla algılanabilmesi için güç seviyesinin mutlak eşiği aşması gerekir; eğer bir sinyal eşiğe ulaşırsa, bilgi merkezi sinir sistemine (MSS) iletilir, burada entegre edilir ve nasıl tepki verileceğine dair bir karar verilir. Uyaranlar genellikle vücudun tepki vermesine neden olsa da, bir sinyalin bir tepkiye neden olup olmayacağını nihai olarak belirleyen MSS'dir.