İçeriğe atla

Akım fonksiyonu

Akış çizgileri – akım fonksiyonunun sabit değerine sahip çizgiler – düzgün akışta dairesel bir silindir etrafındaki sıkıştırılamaz potansiyel akış için

Akım Fonksiyonu (veya Akış işlevi), eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz (ıraksama içermeyen) akışlar için tanımlanır. Akış hızı bileşenleri, skaler (sayıl alan) akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı.[1] Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.[2]

Herhangi iki noktadaki akım fonksiyonu değeri arasındaki fark, aynı iki noktayı birbirine bağlayan hat boyunca var olan hacimsel akış oranını (hacimsel akı) verir.

Akım çizgileri akıştaki hız vektörlerine teğet olduğu için, akım fonksiyonunun değeri akım çizgisi boyunca sabit olmak zorundadır. Akım fonksiyonunun kullanılabilirliği, verilmiş bir noktadaki x- ve y- yönlerindeki hız bileşenleri, bu noktadaki akım fonksiyonunun kısmi türevleri alınarak bulunur gerçeği altında yatar.

İki boyutlu potansiyel akış için akım çizgileri eşpotansiyel çizgilere diktir. Hız potansiyeli ile birlikte alındığında, akım fonksiyonu karmaşık bir potansiyel türetmek için kullanılabilir. Akım fonksiyonu iki veya daha çok boyutlu bir akış için ifade edilebilir. Fakat iki boyutlu durum genellikle hesaplama ve görüntüleme bakımından en kolay olanıdır.

Hız potansiyeli ile birlikte alındığı zaman akım fonksiyonu, potansiyel akışı türetmek için kullanılabilir. Diğer bir deyişle, akım fonksiyonu iki boyutlu Helmholtz dekompozisyonunun selonoidal kısmını ifade ederken, hız potansiyeli ise irrotasyonel (Korunumlu vektör alanı) kısmını ifade eder.

İki Boyutlu Akım Fonksiyonu

Tanımlar

ve noktaları arasındaki eğri boyunca hacim akısı

Akım fonksiyonunun simgesi kullanılan tanıma göre değişir.

Bunlardan birisi akım fonksiyonunu iki boyutlu akış için tanımlamaktır:

hız vektörü durumunda iken

Kartezyen koordinat sistemi'nde aşağıdaki eşitlikteki gibidir

ve hızları, sırasıyla, kartezyen koordinatlardaki ve yönlerindeki hızlardır.

Alternatif Tanımı

Diğer bir tanımı ise şöyledir (genellikle meteoroloji ve okyanus biliminde kullanılır):

,

, yönündeki birim vektördür ve and alt indisler kısmi türevleri belirtir.

Burada kullanılan tanım, yukarıdakine göre ters işarete sahiptir (), böylelikle kartezyen koordinatlardaki biçimi şöyledir

İki Boyutlu Akım Fonksiyonunun Türevi

İki boyutlu düz bir akışta A ve B gibi iki farklı nokta farz edin. Eğer bu iki nokta arası uzaklık çok küçükse: δn ve bir akış bu iki noktalar arasında ortalama bir hızla hareket eder. q AB çizgisine diktir. Birim kalınlık başına düşen hacimsel akış oranı δΨ:

δn → 0, (δn sıfıra yaklaştıkça) yukarıdaki eşitlik düzenlenirse şunu elde etmiş oluruz:

Kartezyen Koordinatlardaki Akış

x-y kartezyen koordinat sistemindeki elementer bir alan içindeki akışı incelediğimizde şunu elde ederiz:

u hızı x eksenine paralel, v ise y eksenine paralel hızdır. Bu yüzden, δn → 0 yaklaştıkça:

Polar Koordinatlardaki Akış

r-θ polar koordinat sistemindeki çok küçük bir bölgeyi incelersek:

vr r eksenine paralel radyal hız bileşeni, vθ ise θ eksenine paralel teğetsel hız vektörüdür. Böylece, δn → 0 gittikçe ve eşitlik yeniden düzenlenince:

Süreklilik: Türev

Kartezyen koordinatlarda iki boyutlu düz bir akış düşünün. Süreklilik denklemi; elementer bir bölge içinde sıkıştırılamaz bir akış için, çıkan kütle giren kütleye eşittir.

Toplam akış aşağıdaki ifadeyle verilir:

Kontrol hacmi dışına çıkan toplam akış:

Böylelikle:

sadeleştirirsek:

Akım fonksiyonunun tanımı itibarıyla yukarıdaki eşitliği birleştirirsek:

bulmuş oluruz

Kaynakça

  1. ^ Lagrange, Joseph-Louis (1736-1813) Auteur du texte (1867-1892). Oeuvres de Lagrange. T. 4 / publiées par les soins de M. J.-A. Serret [et G. Darboux] ; [précédé d'une notice sur la vie et les ouvrages de J.-L. Lagrange, par M. Delambre] (Fransızca). IV. ss. 695-748. 27 Temmuz 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Temmuz 2023. 
  2. ^ Stokes, George Gabriel; Larmor, Joseph; Rayleigh, John William Strutt (1880-1905). Mathematical and physical papers. University of California Libraries. Cambridge : University Press. 
  • B. S. Massey and J. Ward-Smith, Mechanics of Fluids, 7th ed., Nelson Thornes, UK (1998).
  • F. M. White, Fluid Mechanics, 5th ed., McGraw-Hill, New York (2003).
  • T. W. Gamelin, Complex Analysis, Springer, New York (2001). ISBN 0-387-95093-1.
  • AMS Glossary of Meteorology entry: [1]

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Dirac delta fonksiyonu</span>

Adını Paul Dirac' tan alan Dirac delta fonksiyonu tek boyutta

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Bir sanal yerdeğiştirme zaman sabit tutulduğunda sistemin koordinatlarında meydana gelen sonsuz küçük değişimdir. Gerçekte tüm yer değiştirmeler zamana bağlı olduğundan, bu değişime "gerçek" yerine "sanal" denilmiştir. Zamana, ve diğer değişkenlere, , bağlı olan sistem konum vektörlerinin herhangi bir kümesinin tam türevi, aşağıdaki gibi ifade edilebilir:

<span class="mw-page-title-main">Öklid uzayı</span> Öklid geometrisinin yüksek boyutlu vektör uzaylarına genelleştirilmesi

Matematikte Öklid uzayı, Öklid geometrisinin üç boyutlu uzayıdır ve bu kavramlar, çok boyutlu olarak genelleştirilir. “Öklid” terimi bu uzayları, Öklid geometrisi olmayan eğimli uzaydan ve Einstein'nın genel görelilik kuramından ayırt eder. Bu adı Yunan matematikçi Öklid'den dolayı almıştır.

Matematik'te, ortogonal koordinatlar q = (q1, q2, ..., qd) bir d koordinat kümesi olarak tanımlanır, hepsi koordinat yüzeyi içinde dik açılarla birleşir (not: üstsimge indis'tir, üstel değildir). Özel bir koordinat için Bir koordinat yüzeyi qk eğrilik, yüzey veya hiperyüzey veya hangisiyse qk bir sabittir. örneğin, üç-boyut Kartezyen koordinatlar (x, y, z) bir ortogonal koordinat sistemidir. Bu koordinat yüzeyleri için x = sabit, y = sabit ve z = sabit., yüzeyler dik açıda buluşurlar, bu örnek dik açı içindir. Ortogonal koordinatlar eğrisel koordinatlar'ın özel ama son derece yaygın bir durumudur.

<span class="mw-page-title-main">Vektör alanı</span> oklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir.

Yöney alan, Öklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir. Düzlemdeki bir yöney alanı, her biri düzlemdeki bir noktaya ilişik, yönü ve büyüklüğü olan oklar topluluğu olarak düşünülebilir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Matematikte, uzunluğu 1 olan ve uzayda bir norma sahip olan vektöre birim vektör denir. Birim vektör genellikle ‘û‘ gibi şapkalı ve küçük harflerle ifade edilir. Normalize vektör veya versor olmayan bir sıfır vektörü u ile eş yönlü olan birim vektörü u

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Fourier optiği dalgaların yayılma ortamını kendisinin doğal modu olduğunu kabul etmek yerine, belirli bir kaynağa sahip olmayan düzlemsel dalgaların üstdüşümlerin olarak addeden Fourier dönüşümlerini kullanan klasik optiğin bir çalışma alanıdır. Fourier optiği, dalgayı patlayan bir küresel ve fiziksel olarak Green's fonksiyon denklemleriyle tanımlanabilen tanımlanabilen ve bu kaynağından dışarıya ışıma yapan dalganın üstdüşümü olarak adddeden Huygens-Fresnel prensibinin ikizi olarak da görülebilir.

Teorik fzikte, Nordstrom kütleçekim kanunu genel göreliliğin bir öncülüdür. Açıkçası, Fin’li teorik fizikçi Gunnar Nordström tarafından 1912 de ve 1913 te önerilen iki ayrı teori vardır. Bunlardan ilki, hızla geçerliliğini yitirmiş, ancak ikinci, yerçekimi etkileri kavisli uzay-zaman geometrisi bakımından tamamen kabul eden. kütleçekim metrik teorisinin bilinen ilk örneği olmuştur. Nordstrom teorilerinin hiçbiri gözlem ve deney ile uyum içinde değildir. Bununla birlikte, ilkinin kısa sürede üzerindeki ilgiyi kaybetmesi, ikinciyi de etkilemiştir. İkinciden geriye kalan, kütleçekim kendine yeten relativistik teorisi. Genel görelilik ve kütleçekim teorileri için temel taşı niteliği görevi görmektedir. Bir örnek olarak, bu teori, pedagojik tartışmalar kapsamında özellikle yararlıdır.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.

Fizik, mühendislik ve yer bilimleri alanında adveksiyon, bir maddenin veya miktarın bir sıvının toplu hareketi ile taşınmasıdır. O maddenin özellikleri onunla birlikte taşınır. Genellikle maddenin büyük çoğunluğu da bir sıvıdır. Madde ile taşınan özellikler, enerji gibi korunan özelliklerdir. Bir adveksiyon örneği, bir nehirdeki kirleticilerin veya alüvyonun aşağı akıştaki toplu su akışıyla taşınmasıdır. Yaygın olarak tavsiye edilen başka bir miktar enerji veya entalpidir. Burada sıvı, su veya hava gibi termal enerji içeren herhangi bir malzeme olabilir.