İçeriğe atla

Aerodinamik sürüklenme

Aerodinamik bölümünde bahsedilen aerodinamik sürüklenim, bir akışkan yönünde hareket halinde olan herhangi bir katı cisme etki eden akışkan sürüklenim kuvvetine denir. Cisim baz (yakın hesap) alındığında bu kuvvet cismin yüzeyine etki eden basınç dağılımlarından(Dp) ve cisme etki eden kayma kuvvetlerinden(akışkanlığın sonucu [Df]) meydana gelir. Akışın özelliklerine göre hesaplama yapıldığında (uzak hesap) sürüklenim kuvveti 3 temel birime bağlıdır : şok dalgaları, girdaplar ve akışkanlık.

Giriş

Cismin üzerindeki basınç dağılımı cismin yüzeyinde normal kuvvetler oluşturur ki bu kuvvetler akış yönüne göre hesaplanır ve basınç Dp den kaynaklanan sürüklenim kuvvetini ifade eder. Bu normal kuvvetlerin yapısında şok dalgaları, girdaplar ve akışkan mekanizmalar bulunur.

Bir cisme akışkanlık etki ettiğinde üzerindeki basınçlar ayrı olarak hesaplanır ve geriye kalan sürüklenim kuvvetlerine basınç sürüklenimi denir.

Akışkanlığın olmadığı zamanlarda ise cisme etki eden basınç kuvvetleri birbirlerini götürürler bu sebeple sürüklenim sıfır olur.

Ayrı akış alanlarına sahip araçlarda basınç sürüklenimi baskın olan birimdir ki bu durumlarda basınç geri kazanımı oldukça etkisizdir.

Sürtünme sürüklenim kuvveti uçakların yüzeylerine teğet olarak etki eden ve çoğunlukla sınır tabakalarının yapılanmasına ve akışkanlığa (sıvılığa) bağlı olan bir kuvvettir.

Hesaplanan sürtünme direnci (Df), cismin bölünmüş yüzeylerinde x-projeksiyonunda hesaplanmış olan akışkan gerilim kuvvetlerinin geri kazanılmasını sağlar.

Sürtünme direnci ve basınç dirençlerinin toplamı akışkan direncine eşittir. Bu sürüklenim birimi akışkanlığın etkisizliğini ele alır.

Termodinamik boyutta düşünüldüğünde akışkan etkisi geri döndürülemez bir olgu oluşturur ve bu sebeple entropi oluşturur.

Hesaplanan akışkan direnci (Dv), tutarlı sürüklenim kuvveti tahminleri için entropi değişimlerini kullanır.

Uçaklar yükseklik kazanırken bir sürüklenim kuvveti daha ortaya çıkar: ürünlenmiş sürüklenim (Di). Bu kuvvetin oluşma nedeni yükselirkenki meydana gelen girdap oluşumlarının yüzey üzerine etki eden basınç dağılımını bozmasıdır. Ürünlenmiş sürüklenim uçaklarda kalkış ve inişlerdeki en önemli bileşendir.

Bir diğer sürüklenim bileşeni dalga sürüklenimidir (Dw). Bu sürüklenimin ortaya çıkma nedeni jetlerin süpersonik ve transonik hızlarda ilerlerken şok dalgaları yaratmasıdır.

Şok dalgaları yüzey sınırında ve yüzey basınç dağılımda değişimlere neden olur.

Şunu belirtmek gerekir ki akışkan etkenlerin yanı sıra şok dalgalarıda geri dönülemez olgular oluşturur ve bu değişimler entropi dikkate alındığında bulunabilir.

Uzak ve yakın hesaplamaların teorik yaklaşımı

Surfaces described in the integral equation.

Sürüklenim kuvveti akış yönüne göre kuvvet dengesinin integralinden hesaplanabilir.

= uçağın yüzeyi

= dış yüzey sınırı

 = yanal ve dikey yüzeyler


Genellikle, uzak hesaplama örneklerinde hacmin sınırları kişiye özgü ayarlanabilir.

Sağdaki denklem uçağın üzerindeki kuvvetleri ifade ederken soldaki denklem sıvı tarafından uygulanan toplam kuvveti ifade eder. Matematiksel olarak bu iki tümlev birbirlerine eşittir. Ancak kesin hesaplama yapıldığında bu iki denklem sadece yaklaşık değerler alındığında eşit olur. Hesaplamalı Sıvı Dinamiği'nin terminolojisi baz alındığında soldaki denklem çözülürken yakın hesap metodu, sağdaki denklem için uzak hesap metodu kullanılır.

Sürüklenim kuvvetini matematiksel olarak hesaplamak için;

formülü kullanılır.

Tarihçe

Katı bir cismin bir akışkan içerisinde hareket ederken bir dirence maruz kaldığı Aristotle zamanından beri biliniyordu. Louis Charles Breguet’in 1922 yılında yayınladığı kâğıtlarında aerodinamik şekillerden yararlanarak cisimlere etki eden sürüklenimi azaltmayı hedefledi. Bu fikrini gerçekleştirmek üzere çalışmaya başlayan Breguet, 1920 ve 1930 yıllarında dünya rekoru kırmış uçaklar geliştirdi. Ludwig Prandtl’in 1920 yılında elde ettiği sınır çizgisi teorisi, yüzey sürtünmesini minimuma indirmenin temel taşlarını oluşturdu. Sir Melvill Jones’un aerodinamik dizayn konusundaki görüşlerinin ciddiye alınması bu konunun önemli bir hal almasını sağladı. 1929 yılında hazırladığı ‘Aerodinamik Uçak’ isimli kağıdında uçakların daha rahat hareket etmeleri için sürüklenim kuvvetini azaltmalarını gerektiğini söylemiştir. Bu fikrini uluslararası bir seminerde dile getiren Jones, birçok mühendisin takdirini kazanmıştır. Seminer sonunda fikirleri mühendisler tarafından, termodinamikteki Carnot Döngüsü kadar önemli olduğu kanısına varılmıştır.

Kaynakça

  • Anderson, John D. Jr. (2000); Introduction to Flight, Fourth Edition, McGraw Hill Higher Education, Boston, Massachusetts, USA.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

<span class="mw-page-title-main">Triboloji</span>

Triboloji, sürtünme, aşınma ve yağlama konularını inceleyen bilim ve teknoloji dalıdır. Triboloji sözcüğü eski Yunan dilindeki τριβο (tribo) "sürtünme" ile λόγος (logos) "prensip veya mantık" kelimelerinden türetilmiştir.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Kanat</span> hayvan ya da cansız bir objenin uçmasını sağlayan organ ya da parça

Kanat, uçma veya hareket etme amacıyla kullanılan ve genellikle kuşlar, böcekler veya uçaklar gibi hayvanlar veya araçlar tarafından kullanılan bir yapıdır. Kanatlar, aerodinamik prensiplere dayalı olarak tasarlanmış ve şekillendirilmiştir, böylece hava akışını kontrol ederek uçuş veya hareket sağlayabilirler. Kanat belli bir evrimsel ve biyolojik süreç sonrası oluşabilmesinin yanı sıra beşeri olarak da modellenebilip uçmak veya bir sıvı içerisinde hareket sağlamak için de özelleştirilebilmektedir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

<span class="mw-page-title-main">Aerodinamik</span> Fizik terimi ve bilim dalı

Aerodinamik, hareket eden katı kütlelerin havayla etkileşimlerini inceleyen bilim dalıdır. Aerodinamik sözcüğü Yunancadan gelmiş olup bu bilim dalı havanın hareketi ile ilgilidir. Parçalı olarak katı bir cisim ile irtibata geçmiş olması, havanın hareketi ve uçağın kanadı gibi, buna örnek olarak gösterilebilir. Aerodinamik akışkan dinamiği ve gaz dinamiğinin bir alt dalıdır ve aerodinamiğin birçok bakış açısı, teorisi bu alanlarda ortaktır. Aerodinamik genellikle gaz dinamiği için kullanılır; gaz dinamiğinin aerodinamikten farkı, tüm gazlar için çalışması ve aerodinamik gibi yalnızca hava ile sınırlanmamış olmasıdır.

<span class="mw-page-title-main">Aerodinamik kuvvet</span>

Aerodinamik kuvvet, akış halindeki gazın cisimler üzerindeki kuvvet etkisidir. Aerodinamik biliminin ilgilendiği temel kuvvetlerdir. Hareketli akışa maruz kalan her cisme aerodinamik kuvvet uygulanır.

<span class="mw-page-title-main">Kurtulma hızı</span> bir cismin kendisini bağlayan kütleçekim alanından kurtulak için varması gereken hız

Fizikte, kurtulma hızı kütleçekim alanındaki herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cismin kendisini etkileyen kütleçekim alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.

Fizikte Net Kuvvet, bir cisim üzerine etkiyen kuvvetlerin toplamına eşittir. Net kuvvetin hesaplanması için serbest cisim diyagramı oluşturulur ve ortamdan izole edilerek cisme etkiyen kuvvetler vektörel olarak yazılır. Net kuvvetin cisme olan etkisi net kuvvetin yönüyle aynı olmak zorunda değildir. Bu etkiyi hesaplamak için bileşke kuvvet'in ve tork'un hesaplanması gerekir. Çünkü cisme uygulanan kuvvet tek bir nokta olarak düşünülmeyen cisimlerde bir tork yaratabilir ve bu da bileşke kuvvetin net kuvvetten farklı olmasına sebep olabilir. Kuvvetin cisme etki ettiği nokta göz önünde bulundurularak hesaplanan tork ile beraber net kuvvet bize bileşke kuvveti verir. Ve cisim bileşke kuvvetin öne sürdüğü doğrultuda hareket eder.

Akışkanlar dinamiğinde, bir sıvı tarafından çevrelenmiş ve hareket halinde olan bir cisim tarafından hissedilen sürüklenim kuvvetini bulmak için sürüklenim denklemi kullanılır. Bu formül belli koşullar altında daha tutarlı sonuçlar verir:

Akışkanlar dinamiğinde, sürüklenim bir sıvı içerisinde hareket eden bir cismin hareket yönüne zıt yönde etki eden kuvvet topluluğuna denir. Bu kuvvet iki sıvı yüzeyi arasında veya bir katı ve bir sıvı yüzeyi arasında olabilir. Diğer durdurucu kuvvetler nazaran sürüklenim kuvveti hıza bağlıdır. Bir sıvının akış yönü hizasında bulunan katı bir cisme göre, sürüklenim kuvvetleri sıvının hızını her zaman azaltır.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

<span class="mw-page-title-main">Terminal hızı</span>

Terminal hızı, bir nesnenin bir akışkanın içinde düşerken ulaşabileceği maksimum hızdır. Sürükleme kuvveti (Fd) ve kaldırma kuvvetinin toplamı, nesneye etki eden aşağı doğru yerçekimi kuvvetine (Fg) eşit olduğunda bu hıza ulaşılmaktadır. Cisim üzerindeki net kuvvet sıfır olduğundan, cismin ivmesi sıfırdır.

<span class="mw-page-title-main">Rüzgar türbini aerodinamiği</span>

Rüzgarın enerjisi, rüzgar türbininin dönen kanatlarına rüzgarın uyguladığı aerodinamik kuvvetler yoluyla türbinin alternatöründe elektrik enerjisine çevrilir. Bu nedenle aerodinamik hesaplamalar rüzgar türbininde önemlidir. Çoğu makine gibi rüzgar türbinleri de hepsi farklı enerji kazanım kavramlarına dayanır.

<span class="mw-page-title-main">Sürükleme katsayısı</span> bir nesnenin hava veya su gibi sıvı bir ortam içinde sürtünmesi ya da direnç göstermesini nicelendirmek için kullanılan boyutsuz miktar

Akışkanlar dinamiği alanında, sürükleme katsayısı, bir nesnenin hava veya su gibi bir akışkan ortamında maruz kaldığı sürükleme veya direnç miktarını belirlemek için kullanılan bir boyutsuz niceliktir. Sürükleme denkleminde kullanılır ve daha düşük bir sürükleme katsayısı, nesnenin daha az aerodinamik veya hidrodinamik sürüklemeye sahip olacağını ifade eder. Sürükleme katsayısı her zaman belirli bir yüzey alanına bağlı olarak değerlendirilir.

Termal akışkan dinamiği alanında, Nusselt sayısı (Nu), Wilhelm Nusselt'in adını taşıyan ve bir sınır tabakasındaki toplam ısı transferinin, kondüksiyon ısı transferine oranını ifade eden bir boyutsuz sayıdır. Toplam ısı transferi, kondüksiyon ve konveksiyonu içerir. Konveksiyon ise adveksiyon ve difüzyon bileşenlerinden oluşur. Kondüktif bileşen, konvektif koşullar altında ancak hareketsiz bir akışkan için varsayılarak ölçülür. Nusselt sayısı, akışkanın Rayleigh sayısı ile yakından ilişkilidir.

Akışkanlar dinamiği alanında, basınç katsayısı bir boyutsuz sayı olup, bir akış alanındaki bağıl basınçları ifade eder. Basınç katsayısı, aerodinamik ve hidrodinamik çalışmalarında kullanılmaktadır. Her bir akış alanında, her konumsal noktanın kendine özgü bir basınç katsayısı, Cp değeri bulunmaktadır.

<span class="mw-page-title-main">Weber sayısı</span>

Weber sayısı (We), akışkanlar mekaniği alanında farklı iki akışkan arasındaki ara yüzeylerin bulunduğu akışkan akışlarını analiz ederken sıkça kullanılan bir boyutsuz sayıdır ve özellikle yüksek derecede eğilmiş yüzeylere sahip çok fazlı akışlar için oldukça faydalıdır. Bu sayı, Moritz Weber (1871–1951)'in adıyla anılmaktadır. Bu sayı, akışkanın eylemsizliğinin yüzey gerilimine kıyasla göreceli önemini ölçmek için kullanılan bir parametre olarak düşünülebilir. İnce film akışlarının ve damlacık ile kabarcık oluşumlarının analizinde büyük önem taşır.