İçeriğe atla

Adveksiyon

Fizik, mühendislik ve yer bilimleri alanında adveksiyon, bir maddenin veya miktarın bir sıvının toplu hareketi ile taşınmasıdır . O maddenin özellikleri onunla birlikte taşınır. Genellikle maddenin büyük çoğunluğu da bir sıvıdır. Madde ile taşınan özellikler, enerji gibi korunan özelliklerdir. Bir adveksiyon örneği, bir nehirdeki kirleticilerin veya alüvyonun aşağı akıştaki toplu su akışıyla taşınmasıdır. Yaygın olarak tavsiye edilen başka bir miktar enerji veya entalpidir . Burada sıvı, su veya hava gibi termal enerji içeren herhangi bir malzeme olabilir.

Adveksiyon sırasında, bir sıvı, bir miktar korunmuş miktar veya malzemeyi toplu hareket yoluyla taşır. Akışkanın hareketi matematiksel olarak bir vektör alanı olarak tanımlanır ve taşınan malzeme, uzaydaki dağılımını gösteren bir skaler alan tarafından tanımlanır.

Adveksiyon bazen, advektif taşıma ve difüzyon taşımanın birleşimi olan daha kapsamlı konveksiyon süreciyle karıştırılır.

Meteoroloji ve fiziksel oseanografide adveksiyon genellikle atmosferin veya okyanusun ısı, nem (bkz. nem ) veya tuzluluk gibi bazı özelliklerinin taşınmasını ifade eder. Adveksiyon, hidrolojik döngünün bir parçası olarak orografik bulutların oluşumu ve bulutlardan suyun çökelmesi için önemlidir.

Adveksiyon ve konveksiyon arasındaki ayrım

Adveksiyon terimi genellikle konveksiyon ile eşanlamlı olarak hizmet eder. Daha teknik olarak konveksiyon, bir sıvının hareketine uygulanır (genellikle termal gradyanların yarattığı yoğunluk gradyanları nedeniyle), oysa adveksiyon bazı malzemelerin sıvının hızıyla hareketidir. Termal gradyanlarla bağlantılı olarak taşınımı belirtmek için konveksiyon teriminin özel kullanımı nedeniyle, hangi terminolojinin kendi özel sistemini en iyi tanımladığından emin olunmadığı durumlarda, adveksiyon terimini kullanmak muhtemelen daha güvenlidir.

Meteoroloji

Meteoroloji ve fiziksel oseanografide, adveksiyon genellikle atmosferin veya okyanusun ısı, nem veya tuzluluk gibi bazı özelliklerinin yatay taşınmasını ifade eder ve konveksiyon genellikle dikey taşınmayı (dikey adveksiyon) ifade eder. Adveksiyon, hidrolojik döngünün bir parçası olarak orografik bulutların oluşumu ve bulutlardan suyun çökelmesi için önemlidir.

Adveksiyonun Matematiği

Adveksiyon denklemi, bilinen bir hız vektör alanı tarafından savunulduğu için korunmuş bir skaler alanın hareketini yöneten kısmi diferansiyel denklemdir . Gauss teoremi ile birlikte skaler alanın korunum yasası kullanılarak ve sonsuz küçük limit alınarak türetilmiştir.

Adveksiyonun kolayca görselleştirilebilen bir örneği, bir nehre dökülen mürekkebin taşınmasıdır. Nehir akarken, suyun hareketi mürekkebi taşıdığından, mürekkep adveksiyon yoluyla bir "nabız" içinde aşağı doğru hareket edecektir. Mürekkep, önemli miktarda toplu su akışı olmayan bir göle eklenirse, kaynağından difüzyon şeklinde dağılır, bu adveksiyon değildir. Aşağı doğru hareket ettikçe, mürekkebin "nabzının" difüzyon yoluyla da yayılacağını unutmayın. Bu işlemlerin toplamına konveksiyon denir.

Adveksiyon denklemi

Kartezyen koordinatlarda adveksiyon operatörü

hız alanıdır ve del operatörüdür (burada Kartezyen koordinatların kullanıldığına dikkat edin).

Denklemi çözme

u = (sin t, cos t) solenoidal olduğu adveksiyon denkleminin bir simülasyonu.

Adveksiyon denklemini sayısal olarak çözmek kolay değildir: sistem hiperbolik bir kısmi diferansiyel denklemdir ve tipik olarak süreksiz "şok" çözümlere odaklanır (sayısal şemaların üstesinden gelmesi herkesin bildiği gibi zordur).

Bir uzay boyutu ve sabit bir hız alanı ile bile, sistemin simüle edilmesi zordur. Denklem olur

tavsiye edilen skaler alandır ve bu vektörün bileşeni 'dır .

Adveksiyon operatörünün sıkıştırılamaz Navier-Stokes denklemlerinde işlenmesi

Zang'a göre,[1] adveksiyon operatörü için çarpık simetrik form dikkate alınarak sayısal simülasyona yardımcı olunabilir.

Ve yukarıdaki ile aynıdır.

Eğim simetrisi yalnızca hayali özdeğerleri ima ettiğinden, bu form, genellikle keskin süreksizliklere sahip sayısal çözümlerde yaşanan "patlama" ve "spektral engelleme"yi azaltır (bkz. Boyd[2] ).

Vektör hesabı kimlikleri kullanılarak, bu işleçler, daha fazla koordinat sistemi için daha fazla yazılım paketinde mevcut olan başka şekillerde de ifade edilebilir. Bu form aynı zamanda çarpık simetrik operatörün hız alanı ıraksadığında hata verdiğini görünür kılar. Adveksiyon denklemini sayısal yöntemlerle çözmek çok zordur ve bu konuda geniş bir bilimsel literatür vardır.

Kaynakça

  1. ^ "On the rotation and skew-symmetric forms for incompressible flow simulations". Applied Numerical Mathematics. 7: 27-40. 1991. doi:10.1016/0168-9274(91)90102-6.  Birden fazla yazar-name-list parameters kullanıldı (yardım); Yazar |ad1= eksik |soyadı1= (yardım)
  2. ^ Chebyshev and Fourier Spectral Methods 2nd edition. Dover. 2000. s. 213. 5 Nisan 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Nisan 2023.  Yazar |ad1= eksik |soyadı1= (yardım)

İlgili Araştırma Makaleleri

Vektör hesaplamada, divergence bir vektör alanının kaynak ya da batma noktasından uzaktaki bir noktada genliğini ölçen işleçtir; yani bir vektör alanının uzaksaması işaretli bir sayıdır. Örneğin ısındıkça genişleyen havanın hızını gösteren bir vektör alanının uzaksaması pozitif olacaktır, çünkü hava genişlemektedir. Eğer hava soğuyup daralıyorsa uzaksama negatif olacaktır. Bu özel örnekte uzaksama yoğunluğun değişiminin ölçüsü olarak düşünülebilir.

ile gösterilen bir vektör alanının rotasyoneli, nabla operatörü ile 'nin vektörel çarpımına eşittir.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Ampère kanunu</span>

Klasik elektromanyetizmada Ampère yasası kapalı bir eğri üzerinden integrali alınmış manyetik alanla o eğri üzerindeki elektrik akımı arasındaki ilişkiyi açıklayan yasadır. James Clerk Maxwell yasayı hidrodinamik olarak 1861 tarihli Fizikte kuvvet çizgileri üzerine makalesinde tekrar kanıtlar. Yasanın matematiksel ifadesi şu anda klasik elektromanyetizmayı oluşturan dört temel Maxwell denkleminden biridir.

Klein-Gordon Denklemi, Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

Matematikte, Poisson denklemi elektrostatik, makine mühendisliği ve teorik fizik'de geniş kullanım alanına sahip eliptik türdeki Kısmi diferansiyel denklemlerdir. Fransız matematikçi, geometrici ve fizikçi olan Siméon Denis Poisson'dan sonra isimlendirilmiştir. Poisson denklemi

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Matematikte, Green kuramı basit, kapalı bir C eğrisi etrafındaki çizgi integrali ile C eğrisinin sınırlandırdığı D düzlem bölgesi üzerindeki çift katlı integral arasındaki ilişkiyi verir. Teorem adını matematikçi George Green'den almıştır ve daha genel hâli olan Stokes teoreminin iki boyuttaki özel durumudur.

Vektör kalkülüsün'de, matematiğin bir dalıdır, üçlü çarpım genellikle öklit vektörü olarak adlandırılan üç boyutlu vektörlerin çarpımıdır. Üçlü çarpım tabiri iki farklı çarpım için kullanılır, bunlardan ilki skaler değerler için kullanılan skaler üçlü çarpımı, bir diğeri ise vektörel değerliler için kullanılan vektörel üçlü çarpımdır.

Fourier optiği dalgaların yayılma ortamını kendisinin doğal modu olduğunu kabul etmek yerine, belirli bir kaynağa sahip olmayan düzlemsel dalgaların üstdüşümlerin olarak addeden Fourier dönüşümlerini kullanan klasik optiğin bir çalışma alanıdır. Fourier optiği, dalgayı patlayan bir küresel ve fiziksel olarak Green's fonksiyon denklemleriyle tanımlanabilen tanımlanabilen ve bu kaynağından dışarıya ışıma yapan dalganın üstdüşümü olarak adddeden Huygens-Fresnel prensibinin ikizi olarak da görülebilir.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.