İçeriğe atla

Advanced Light Source

Koordinatlar: 37°52′33″N 122°14′55″W / 37.8757°K 122.2485°B / 37.8757; -122.2485
Lawrence Berkeley Ulusal Laboratuvarı'ndaki Gelişmiş Işık Kaynağı ve çevresindeki binalar

Gelişmiş Işık Kaynağı (ALS) Berkeley Lawrence Berkeley Ulusal Laboratuvarı, Kaliforniya'da Gelişmiş Işık Kaynağı (ALS) bir senkrotron ışık kaynağıdır. 1987'den 1993'e kadar inşa edilmiştir. 210 bilim insanı ve personeli şu anda orada çalışmaktadır. ALS aynı zamanda ulusal kullanıcı tesisidir. ALS bilimsel ve teknolojik araştırmalar için ışığı yoğun hale getirir. Aynı zamanda mor ötesi ve x–ışınları açısından dünyanın en görkemli yerlerinden biridir. Her yıl, dünyanın dört bir yanındaki üniversite, endüstri ve devlet laboratuvarlarından gelen 2000'in üzerinde araştırmacı buraya gider. ALS Amerika Birleşik Devletlerindeki Temel Enerji Bilimleri Enerji ofisi tarafından finanse edilir.

ALS kırkın üzerinde ışın demetlerine sahiptir. Aynı zamanda birbirleri ile çeşitli varyasyonlar yaparlar. Herhangi yetkili bir bilim insanı ALS ışın demetlerini kullanmayı isteyebilir. Ve teklif başkaları tarafından gözden geçirilir. ALS'yi kullanmak için çoğu insanın katıldığı öneriler kabul edilir. Eğer kullanıcıların araştırmaları kamu yararına yapılırsa, ALS'yi kullanmak için para talep edilmez. Gelişmiş ışık kaynağının (ALS'nin) günümüzdeki yöneticisi Roger Falcone'dur.

Tarihçe

1920'lerde, Berkeley, Kaliforniya'daki fizikçiler atom altı parçacıkların hızlandırılması üzerinde çalışmaya başladılar. 1929'da, atom altı parçacıkları hızlandırmak için Ernest O. Lawrence ilk kiklotronu inşa etti. İkinci dünya savaşı sırasında, oradaki laboratuvar Manhattan Projesinin bir parçası olmuştu. Ve onlara ordudan para sağlanmıştı. 1942'de, Lawrence Arthur Brown, Jr.'yi (yani San Francisco Coit Tower tasarımcısını) Lawrence'ın yeni 4.67 m (184) siklotronunu tutması için yeni bir yuvarlak bina tasarlaması için kiraladı. Bu bina ve eklentileriyle birlikte bugün ALS'ye aittir. 1977'ye kadar, bu laboratuvar Amerika Birleşik Devletleri Atom Enerjisi Komisyonunun bir parçasıydı. Ve daha sonra laboratuvar Birleşik Devletler Enerji Bölümüne taşındı.

Fizikçiler parçacık hızlandırıcılarını enerjilerini arttırarak geliştirmeye devam ettiler. Maddenin daha küçük yapıtaşlarını incelemek için tasarımcılar daha yüksek enerji elde etmeyi istediler. Başlangıçta, fizikçiler yüklü parçacıkların etraflarında dönerek elektromanyetik radyasyon verdiklerini tespit ettiler. 1950'lerin başlarında, diğer bilim adamları bu radyasyonu deneylerde makinelerin temel amacı olan şiddetli atom çarpışmalarıyla ilgisiz olarak kullandılar. Parçacık hızlandırıcıları siklotronlardan senkrotronlara (yani sarmal yol yerine dairesel yolda giden parçacıklara) doğru değişmiştir. Senkrotronlar için yapım maliyeti daha fazla arttı ve birçok ülke yüksek enerjili atom deneylerini yönetmek için CERN’deki sadece bir tane büyük senkrotronun yapımına katıldı. Diğer senkrotron laboratuvarları, Lawrence Berkeley Laboratuvarı gibi, yeni parçacıklar keşfetmek için yeterli enerjiye sahip değillerdi. Bu yüzden, makinelerini elektromanyetik radyasyon kaynağı olarak kullandılar. Makineleri parçacıklar daha hızlı gitsin diye ayarlamak yerine, ışığın belirli frekanslarını yaymak için parçacık demetlerini nasıl oynatacaklarını öğrendiler. 1980’lerde ve 1990’larda, Bilim insanları her zamankinden daha parlak ışık (daha yoğun elektromanyetik radyasyon) oluşturmak için senkrotronları yeniden tasarlamak istediler. Bu tasarımlar ilk üçüncü nesil senkrotronlar olarak adlandırıldı ve ALS ilk üçüncü nesil senkrotronları işleme aldı.

1980’lerin başlarında, gelişmiş ışık kaynağı (ASL) eski Lawrence Berkeley laboratuvarı yöneticisi David Shirley tarafından ilk kez önerildiğinde, şüpheciler lakaplı "Shirley Tapınağı" tarafından kuşkuyla bakılmış ve x ışınları ve mor ötesi ışınları üreten kikrotronun kullanımına bile şüpheyle yaklaşılmıştır. Eski ALS yöneticisi Daniel Chemla'ya göre, "ALS gibi üçüncü nesil yumuşak x ışını tesisi için bilimsel olgu her zaman ses getirmiştir. Ancak, daha büyük bilimsel bir topluluğun oluşması için mücadeleye inanmak gerekir." 1987'de, Reagan yönetimi bütçesiyle, gelişmiş ışık kaynağının inşası (ALS'nin yapımı) için Başkan Ronald Reagan $1.5 milyon dolar tahsis etti.

Dış bağlantılar


İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

Elektromanyetik tayf veya elektromanyetik spektrum (EMS), evrenin herhangi bir yerinde fizik kurallarınca mümkün kılınan tüm elektromanyetik radyasyonu ve farklı ışınım türevlerinin dalga boyları veya frekanslarına göre bu tayftaki rölatif yerlerini ifade eden ölçüt. Herhangi bir cismin elektromanyetik tayfı veya spektrumu, o cisim tarafından çevresine yayılan karakteristik net elektromanyetik radyasyonu tabir eder.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Radyoaktivite</span> Atom çekirdeğinin kendiliğinden parçalanması

Radyoaktivite, radyoaktiflik, ışınetkinlik veya nükleer bozunma; atom çekirdeğinin, daha küçük çekirdekler veya elektromanyetik ışımalar yayarak kendiliğinden parçalanmasıdır. Çekirdek tepkimesi sırasında veya çekirdeğin bozunması ile ortaya çıkar. En yaygın ışımalar alfa(α), beta(β) ve gamma(γ) ışımalarıdır. Bir maddenin radyoaktivitesi bekerel veya curie ile ölçülür.

<span class="mw-page-title-main">Işık</span> elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon

Işık veya görünür ışık, elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon. Görünür ışık genellikle 400-700 nanometre (nm) aralığında ya da kızılötesi ve morötesi arasında 4.00 × 10−7 ile 7.00 × 10−7 m dalga boyları olarak tanımlanır. Bu dalga boyu yaklaşık 430-750 terahertz (THz) frekans aralığı anlamına gelir.

<span class="mw-page-title-main">Parçacık hızlandırıcı</span>

Parçacık hızlandırıcı, yüklü parçacıkları yüksek hızlara çıkarmak ve demet halinde bir arada tutmak için elektromanyetik alanları kullanan araçların genel adıdır. Büyük hızlandırıcılar parçacık fiziğinde çarpıştırıcılar olarak bilinirler. Diğer tip parçacık hızlandırıcılar, kanser hastalıklarında parçacık tedavisi, yoğun madde fiziği çalışmalarında senkrotron ışık kaynağı olmaları gibi birçok farklı uygulamalarda kullanılır. Şu an dünya çapında faaliyette olan 30.000'den fazla hızlandırıcı bulunmaktadır.

Antimadde, karşı madde veya karşıt madde, maddenin ters ikizi. Paul Dirac denklemiyle ortaya çıkarılmış ve daha sonraki gözlemlerle de varlığı doğrulanmıştır. Antimadde en basit hâliyle normal maddenin zıddıdır. Antimaddenin atomaltı parçacıkları, normal maddeye göre zıt özellikler taşımaktadır. Bu atomaltı parçacıkların elektrik yükleri, normal maddenin atomaltı parçacıklarının tam tersidir. Antimadde, Büyük Patlama'dan sonra normal maddeyle birlikte oluşmuştur; fakat sebebinin ne olduğunu bilim insanları tam anlamıyla bilemeseler de evrende oldukça nadir bulunmaktadır.

<span class="mw-page-title-main">Alfa parçacığı</span>

Alfa parçacığı (alfa, Yunan alfabesindeki ilk harf ile gösterilir, α) parçacık ışınları arasında yüksek derecede iyonlaştırıcı bir ışın formudur. İki proton ve iki nötronun helyum çekirdeğindekine benzer bağları sebebiyle He2+ olarak da gösterilir. Alfa parçacığının kütlesi 6.644656×10−27 kg olup, 3.72738 GeV enerjiye denktir.

<span class="mw-page-title-main">Gama ışını</span> elektromanyetik bir rasyasyon (ışıma) türü

Gama ışını veya gama ışıması, atom altı parçacıkların etkileşiminden kaynaklanan, belirli bir titreşim sayısına sahip elektromanyetik ışınımdır; genelde uzayda gerçekleşen çekirdeksel tepkimelerin sonucunda üretilirler. X ışınlarının ötesinde yer alırlar.

<span class="mw-page-title-main">X ışını</span> Elektromanyetik radyasyon

X ışınları veya Röntgen ışınları, 0,125 ile 125 keV enerji aralığında veya buna karşılık, dalgaboyu 10 ile 0,01 nm aralığında olan elektromanyetik dalgalar veya foton demetidir. 30 ile 30.000 PHz (1015 hertz) aralığındaki titreşim sayısı aralığına eşdeğerdir. X ışınları özellikle tıpta tanısal amaçlarla kullanılmaktadırlar. İyonlaştırıcı radyasyon sınıfına dahil olduklarından zararlı olabilirler. X ışınları 1895'te Wilhelm Conrad Röntgen tarafından Crookes tüpü (Hittorf veya Lenard tüpleri ile de) ile yaptığı deneyler sonucunda keşfedilmiştir. Klasik fizik sınırları içinde, X-ışınları aynı görünür ışık gibi bir elektromanyetik dalga olup, görünür ışıktan farkı düşük dalga boyu, dolayısıyla yüksek frekansları ve enerjileridir. Morötesi'nin ötesidir. X Işınlarının ötesi ise Gama ışınları'dır.

<span class="mw-page-title-main">Ernest Lawrence</span>

Ernest Orlando Lawrence,, 1939 yılında icadı siklotron ile Nobel Fizik Ödülü kazanmış olan, Amerikalı nükleer fizikçi. Manhattan Projesi için yaptığı uranyum izotop ayırma üzerindeki çalışması, Lawrence Berkeley Ulusal Laboratuvarı ve Lawrence Livermore Ulusal Laboratuvarı kuruluşundaki katkıları ile tanınmaktadır.

<span class="mw-page-title-main">Siklotron</span> bir çeşit parçacık hızlandırıcı

Siklotron bir çeşit parçacık hızlandırıcıdır. Siklotronlar yüklü parçacıkları yüksek frekanslı alternatif gerilim kullanarak hızlandırır.

<span class="mw-page-title-main">Philipp Lenard</span> Alman fizikçi (1862 – 1947)

Philipp Eduard Anton von Lenard, 1905'te katot ışınları ve özellikleri araştırmasıyla Nobel Fizik Ödülü almış Alman fizikçidir. Kendisi milliyetçi ve Yahudi aleyhtarı; aktif bir Nazi ideoloji savunucusudur. 1920'lerde Adolf Hitler'i desteklemiş ve Nazi döneminde “Deutsche Physik” hareketinde önemli bir rol-model olmuştur.

<span class="mw-page-title-main">Kozmik ışın</span> Çoğunlukla Güneş sistemi dışından kaynaklanan yüksek enerjili parçacık

Kozmik ışınlar, temelde Güneş Sistemi'nden yıldızlardan hatta uzak galaksilerden kaynaklanan, yüksek enerjili bir parçacık yağmurudur. Bu ışınlar Dünya atmosferi ile etkileştiğinde, bazen yüzeye ulaşan ikincil kozmik ışın duşlarını üretebilir. Öncelikle yüksek enerjili protonlardan ve atom çekirdeğinden oluşan bu ışınlar güneş veya güneş sistemimizin dışından kaynaklanır. Fermi Uzay Teleskobu'ndan (2013) elde edilen veriler, birincil kozmik ışınların önemli bir bölümünün yıldızların süpernova patlamalarından kaynaklandığının kanıtı olarak yorumlanmıştır.

<span class="mw-page-title-main">Çerenkov radyasyonu</span>

Çerenkov ışıması ya da Çerenkov radyasyonu elektrik yüklü bir parçacığın bir yalıtkan içerisinden bulunduğu ortamdaki ışık hızından daha büyük bir sabit hızda geçerken ortaya çıkan bir elektromanyetik ışımadır.

<span class="mw-page-title-main">Radyasyon</span> Uzayda hareket eden dalgalar veya parçacıklar

Radyasyon veya ışınım, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. "Radyoaktif maddelerin alfa, beta, gama gibi ışınları yaymasına" veya "Uzayda yayılan herhangi bir elektromanyetik ışını meydana getiren unsurların tamamına" da radyasyon denir. Bir maddenin atom çekirdeğindeki nötronların sayısı, proton sayısına göre oldukça fazla veya oldukça az ise; bu tür maddeler kararsız bir yapı göstermekte ve çekirdeğindeki nötronlar alfa, beta, gama gibi çeşitli ışınlar yaymak suretiyle parçalanmaktadırlar. Çevresine bu şekilde ışın saçarak parçalanan maddelere radyoaktif madde denir.

<span class="mw-page-title-main">İyonlaştırıcı olmayan radyasyon</span> Düşük frekanslı radyasyon

İyonlaştırıcı olmayan radyasyon, bir atomdan veya molekülden bir elektronu tamamen koparabilmek için atomları veya molekülleri iyonlaştırabilecek yeterli enerji taşıyan kuantumlara sahip olmayan herhangi bir elektromanyetik radyasyon türüdür. Elektromanyetik radyasyon, maddenin içinden geçerken yüklü iyonlar üretmez. Yalnızca, bir elektronu daha yüksek enerji seviyesine çıkaran uyarım için yeterli enerjiye sahiptir. İyonlaştırıcı olmayan radyasyondan daha yüksek bir frekansa ve daha kısa dalga boyuna sahip olan iyonlaştırıcı radyasyon birçok kullanım alanına sahiptir, ancak sağlık için bir tehdit olabilir. İyonlaştırıcı radyasyona maruz kalmak yanıklara, radyasyon hastalıklarına, kansere ve genetik hastalıklara sebep olabilir. İyonlaştırıcı radyasyon kullanmak, iyonlaştırıcı olmayan radyasyon kullanılırken genelde gerekli olmayan dikkatli ve özenle alınmış radyolojik korunma önlemleri gerektirir.

Kuantum optiği yarı klasik ve kuantum mekaniği fiziğini kullanarak ışığı içeren olayları ve onun mikroskobik seviyelerdeki maddelerle etkileşimini inceler.

<span class="mw-page-title-main">X ışını mikroskobu</span>

Bir x ışını mikroskobu yumuşak X ışını şeritlerinde elektromanyetik radyasyonu kullanarak objelerin büyütülmüş görüntülerini üretir. X ışınları birçok objenin içinden geçebildiğinden onları gözlemlemek için özellikle hazırlamak gerekmez.

<span class="mw-page-title-main">Işın hattı</span>

Hızlandırıcı fizikte, ışın demet hattı (beamline) hızlandırıcı tesisin belirli bir yolu boyunca tüm yapıyı içeren, hızlandırılmış parçacık demetlerinin yörüngesini ima eder.