İçeriğe atla

Adi diferansiyel denklem

Matematikte adi diferansiyel denklem (İngilizce ODE - Ordinary Differential Equation), tek değişkenli fonksiyonların türevlerini ilişkilendiren diferansiyel denklem çeşididir. Adi diferansiyel denklemler adı daha yaygındır. Kapalı olarak şeklinde gösterilirler. Bu ifadede denklemin derecesini gosterir.

Bu denklem türüne basit bir örnek Newton'un ikinci yasası olan hareketin diferansiyel eşitliği şöyledir;

m kütle parçasının hareketi için F kuvveti x(t) parçasının t anındaki fonksiyonu olan x(t) eşitliğin her iki tarafında diferansiyel denklem uygulanarak F(x(t)) elde edilir.

Adi diferansiyel denklemler birkaç bağımsız değişken içerebilen Kısmi diferansiyel denklemlerden ayırt edilmelidir.

Kısmi diferansiyel denklemler birçok farklı içeriği olan geometrik, mekanik, astronomik gibi alanları içerir. Newton, Leibniz, Bernoulli, Riccati, Clairaut, d'Alembert, Laplace ve Euler gibi birçok tanınmış matematikçi bu alanlara katkıda bulunmak için diferansiyel denklemler üzerinde çalışmalar yaptı.

Çalışmaların çoğu kısmi diferansiyel denklemlerin çözümü için yapıldı. Bunun sonucunda lineer eşitlikler analitik metotlarla çözülebildi. Günümüzde mevcut olan diferansiyel denklemlerin çoğu lineer olmayandır ve birkaç özel metotla çözümü tam olarak mümkün değildir. Yaklaşık çözümlere bilgisayar yaklaşımları ve sayısal analiz kullanılarak ulaşılır. (bkz. numerik adi diferansiyel denklemler).

Tanktan atılan bir merminin yolu belirli bir eğim çizerek gider. Bu eğri Newton'un ikinci kanununa göre basit diferansiyel denklemdir.

Denklemler yapılarına göre doğrusal veya doğrusal olmayan şeklinde sınıflandırılabilirler. Eğer doğrusal bir denklemde eşitliğin sağ tarafındaki f(x) sıfıra eşitse, homojen diferansiyel denklem, değilse homojen olmayan difransiyel denklem olarak ikiye ayrılırlar. Lineer olmayan denklemlerin homojenliğinden söz edilemez.

Bir diferansiyel denklemin çözümü sonsuz sayıdadır, çünkü bu denklemlerin çözümünde o denklemi sağlayan bir fonksiyon ailesi elde edilir. Ancak başlangıç koşulları veya sınır değerleri verilerek çözümde teklik sağlanır. Bir diferansiyel denklemi sağlayan fonksiyon ailesine, o denklemin genel çözümü denir. Başlangıç veya sınır değerleriyle elde edilen çözüme ise özel çözüm denir. Diferansiyel denklemleri çözmek için çeşitli yöntemler geliştirilmiştir.

Açıklamalar

Adi diferansiyel denklem

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

<span class="mw-page-title-main">Dalga denklemi</span> kısmi diferansiyel bir denklem

Dalga denklemi fizikte çok önemli yere sahip bir kısmi diferansiyel denklemdir. Bu denklemin çözümlerinden, ses, ışık ve su dalgalarının hareketlerini betimleyen fiziksel nicelikler çıkar. Kullanım alanı, akustik, akışkanlar mekaniği ve elektromanyetikte oldukça fazladır. Genellikle elektromanyetik dalgalar gibi dalgalar için dalga denkleminin vektörel formülasyonu kullanılır. Bu formülasyonda elektrik alanları şeklindeki vektörlerle gösterebilir ve vektörün her bi bileşeni skaler dalga denklemine uymak zorundadır. Yani vektörel dalga denklemleri çözülürken her bir bileşen ayrı ayrı çözülür. Denklemin en basit hali aşağıdaki şekliyle gösterilir,

Matematikte matematiksel programlama, eniyileme ya da optimizasyon terimi; bir gerçel fonksiyonu minimize ya da maksimize etmek amacı ile gerçek ya da tam sayı değerlerini tanımlı bir aralıkta seçip fonksiyona yerleştirerek sistematik olarak bir problemi incelemek ya da çözmek işlemlerini ifade eder. Örneğin bu problem şöyle olabilir:

Matematikte, bir kısmi diferansiyel denklem birkaç değişkenli bir fonksiyon ile bu fonksiyonun değişkenlere göre kısmi türevleri arasındaki ilişkiyi inceler.

<span class="mw-page-title-main">Doğrusal denklem</span>

Doğrusal ya da lineer denklem terimlerinin her biri ya birinci dereceden değişken ya da bir sabit olan denklemlerdir. Böyle denklemlere "doğrusal" denmesinin nedeni içerdikleri terim ve değişkenlerin sayısına bağlı olarak (n) düzlemde ya da uzayda bir doğru belirtmesindendir. Doğrusal denklemlerin en yaygını bir ve değişkeni içeren aşağıdaki formdur:

<span class="mw-page-title-main">İki cisim problemi</span>

Klasik mekanikte iki cisim problemi sadece birbirleriyle etkileşen iki nokta parçacığın hareketini tanımlamak için kullanılır. Bir gezegen ve yörüngesinde dolanan bir uydu, bir yıldız ve yörüngesindeki bir gezegen, birbirlerinin yörüngelerinde dolanan iki yıldız ve klasik atom modelinde çekirdeğin etrafında dolanan elektron, yaygın örneklerdir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Bessel fonksiyonları ilk önce Daniel Bernoulli tarafından tanımlanmış ve Friedrich Bessel tarafından genelleştirilmiş

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

<span class="mw-page-title-main">Doğrusal denklem dizgesi</span>

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

<span class="mw-page-title-main">Green fonksiyonları</span>

Green fonksiyonları, matematikte homojen olmayan diferansiyel denklemlerin, istenen sınır koşulları altında çözülmesinde kullanılan bir yöntemi ve bu yöntemle ilişkili olarak hesaplanan fonksiyonu belirtmekte kullanılır. İlk kez matematikçi George Green tarafından kullanılmıştır.

Matematikte, Poisson denklemi elektrostatik, makine mühendisliği ve teorik fizik'de geniş kullanım alanına sahip eliptik türdeki Kısmi diferansiyel denklemlerdir. Fransız matematikçi, geometrici ve fizikçi olan Siméon Denis Poisson'dan sonra isimlendirilmiştir. Poisson denklemi

Matematikte Bernoulli diferansiyel denklemi, birinci mertebeden bir adi diferansiyel denklemin açık biçimi şöyledir:

,
<span class="mw-page-title-main">Süperpozisyon prensibi (fizik)</span> Bir parçacık veya sistemin belli bir zamanda birden fazla durumda olabilmesi.

Fizikte ve sistem teorisinde, süperpozisyon prensibi, tüm lineer sistemler için bir veya daha fazla uyarılar tarafından oluşan net tepki olarak belirtilen süper pozisyon özelliği olarak da bilinir. Kuantum mekaniğinde iki dolanık parçanın durumuna da süperpoziyon denilir. Bu uyarılar her bir uyarıcı tarafından tek tek meydana gelen uyarıların toplamıdır. Eğer giriş A, X tepkisini üretirse ve giriş B, Y tepkisini üretirse, sonuç olarak giriş (A+B), (X+Y) tepkisini üretir. Homojenlik ve eklenebilirlik özellikleri birlikte süperpozisyon prensibi olarak adlandırılır. Bir lineer fonksiyon süperpozisyon prensibini sağlayanlardan biridir ve şöyle tanımlanır:

 Eklenebilirlik
  Homojenlik
skaler a için.
<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Tam diferansiyel denklem veya Sağın diferansiyel denklem fizikte ve mühendislikte sıklıkla kullanılan bir tür adi diferansiyel denklemdir.

<span class="mw-page-title-main">Sınır değer problemi</span>

Matematikte sınır değer problemleri, sınır koşulları ile verilen diferansiyel denklemlerdir. Bir sınır değer probleminin çözümü, verilen diferansiyel denklemin uygun sınır koşullarına uyum sağlayan çözümüdür.

Diğer bir adı sabitlerin değişimi olarak bilinir. Bu teknik homojen olmayan lineer diferansiyel denklemlerde partiküler (özel) çözümü bulmak için kullanılır.

Floquet teorisi, periyodik katsayılı doğrusal diferansiyel denklem sistemlerinin çözümü ile ilgilenen bir matematik alt dalıdır. Floquet teorisi,

Doğrusallık, grafiksel olarak düz bir çizgi olarak gösterilebilen matematiksel bir ilişkinin (fonksiyonun) özelliğidir. Doğrusallık, orantılılık kavramı ile yakından ilişkilidir. Fizikteki örnekler, bir elektrik iletkenindeki voltaj ve akımın doğrusal ilişkisini ve kütle ve ağırlık ilişkisini içermektedir. Daha karmaşık ilişkiler doğrusal olarak sayılmamaktadır.