İçeriğe atla

A-kanunu algoritması

Giriş sinyaline göre (yeşil) A-yasası (mavi) ve μ-yasası (kırmızı) sıkıştırmasının karşılaştırılması. Her iki eksen de desibel cinsinden logaritmik ölçeği kullanır.
A = 87.6 için A-Yasası için F ( x ) grafiği
48000 Hz A-Law ses misali
48000 Hz orijinal (Commons'taki File:LL-Q256 (tur)-ToprakM-konuşma.wav dosyası, CC-BY4)

A-kanunu algoritması, Avrupa 8-bit PCM dijital iletişim sistemlerinde, dijitalleştirme için bir analog sinyalin dinamik aralığını optimize etmek, yani modifiye etmek için kullanılan standart bir sıkıştırma algoritmasıdır. ITU-T'nin G.711 standardındaki iki daraltıcı algoritmadan biridir (diğeri ise Kuzey Amerika ve Japonya'da kullanılan benzer μ yasasıdır).

girişi A-yasasını kodlamanın denklemi aşağıdaki gibidir:Burada sıkkıştırma parametresidir. Avrupa'da .

A-yasası açılımı ters fonksiyonla verilir:Bu kodlamanın nedeni, geniş konuşma dinamik aralığının aralığının doğrusal dijital kodlamanarak verimli olmamasıdır. A-yasası kodlaması, sinyalin dinamik aralığını etkili bir şekilde azaltır, böylece kodlama verimliliği artar ve belirli sayıda bit için doğrusal kodlamayla elde edilenden daha üstün bir sinyal- bozulma oranı elde edilir.

μ-kanunu ilr karşılaştırma

μ-kanunu algoritması, küçük sinyaller için daha kötü orantısal bozulma karşılığında A-yasası'ndan biraz daha geniş bir dinamik aralık sağlar. Sözleşmeye göre, en az bir ülkenin kullanması durumunda uluslararası bağlantı için A kanunu kullanılır.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

Minkowski Eşitsizliği, sonlu sayıda, hepsi sıfır olmayan , , i=1,2,...,n pozitif sayılarında, p>1 için aşağıdaki eşitsizliğe denir:

<span class="mw-page-title-main">İşaret fonksiyonu</span>

İşaret fonksiyonu, tanımlanan değerin işaretine göre, -1, 0 ve +1 sonuçlarını veren bir fonksiyondur. Tanımlanacak değer 0'dan küçükse: -1, 0'a eşitse: 0 ve 0'dan büyükse: +1 sonucunu verir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

<span class="mw-page-title-main">Laplace dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Laplace dağılımı Pierre-Simon Laplace anısına isimlendirilmiş bir sürekli olasılık dağılımıdır. Arka arkaya birbiriyle yapıştırılmış şekilde ve bir de konum parametresi dahil edilerek birleştirilmiş iki üstel dağılımdan oluştuğu için, çift üstel dağılımı adı ile de anılmaktadır. İki bağımsız ve tıpatıp aynı şekilde üstel dağılım gösteren bir rassal değişken bir Laplace dağılımı ile işlev görürler. Bu, aynen üstel dağılım gösteren rassal zamanda değerlendirilen Brown devinimine benzer.

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

<span class="mw-page-title-main">Log-normal dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında log-normal dağılım logaritması normal dağılım gösteren herhangi bir rassal değişken için tek-kuyruklu bir olasılık dağılımdır. Eğer Y normal dağılım gösteren bir rassal değişken ise, bu halde X= exp(Y) için olasılık dağılımı bir log-normal dağılımdır; aynı şekilde eğer X log-normal dağılım gösterirse o halde log(X) normal dağılım gösterir. Logaritma fonksiyonu için bazın ne olduğu önemli değildir: Herhangi iki pozitif sayı olan ab ≠ 1 için eğer loga(X) normal dağılım gösterirse, logb(X) fonksiyonu da normaldir.

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

<span class="mw-page-title-main">Kovaryans matrisi</span>

İstatistik'te, kovaryans matrisi, rassal vektörlerin elemanları arasındaki kovaryansları içeren matristir. Kovaryans matrisi, skaler-değerli rassal değişkenler için var olan varyans kavramının çok boyutlu durumlara genelleştirilmesidir.

<span class="mw-page-title-main">Kare dalga</span>

Kare dalga, genliğin sabit bir frekansla, iki değer, maksimum ve minumum, arasında eşit süreler kalarak değiştiği, sinüsoidal olmayan periyodik dalgadır. İdeal kare dalgada genliğin iki seviye arasında geçişi anlıktır; bu sırada herhangi bir gecikme yaşanmaz. Ancak bu durum fiziksel sistemlerde gerçeklenebilir değildir. Kare dalgalar elektronikte ve sinyal işlemede sıkça kullanılır. Kare dalga, genlik seviyelerinde kalma süresi farklı olabilen dikdörtgen dalganın özel halidir.

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

Medyan bir anakütle ya da örneklem veri serisini küçükten büyüğe doğru sıraladığımızda, seriyi ortadan ikiye ayıran değere denir. İstatistiğin bir alt dalı olan betimsel istatistikde medyan bir merkezsel konum ölçüsü kabul edilir.

Temel grup, Henri Poincaré'in 1895'te yayınladığı "Analysis Situs" adlı makalesinde tanımlanmıştır. Kavram, Bernhard Riemann, Poincaré ve Felix Klein'ın çalışmalarıyla Riemann yüzeyleri teorisinden ortaya çıkmıştır. Karmaşık değerli fonksiyonların monodromik özelliklerini açıkladığı gibi kapalı yüzeylerin tam bir topolojik sınıflandırılmasını sağlar.

Parçalı fonksiyon, matematikte tanım aralığı alt aralıklara parçalanan ve her bir alt aralık için farklı bir fonksiyon olarak tanımlanan bir fonksiyon türüdür.

<span class="mw-page-title-main">Logaritmik ortalama</span>

Matematikte logaritmik ortalama, iki pozitif gerçek sayının farkının bu sayıların doğal logaritmalarının farkına oranı olarak tanımlanır. Bu hesaplama, ısı ve kütle transferi içeren mühendislik problemlerinde kullanılabilir.

<span class="mw-page-title-main">U-kanunu algoritması</span>

μ-kanunu algoritması, öncelikle Kuzey Amerika ve Japonya'daki 8 bitlik PCM dijital telekomünikasyon sistemlerinde kullanılan bir sıkıştırma algoritmasıdır. ITU-T'nin G.711 standardında yer alan iki sıkıştırma algoritmasından biridir, zaten diğeri ise benzer A kanunudur. A-kanunu, Avrupa gibi dijital telekomünikasyon sinyallerinin E-1 devreleri üzerinde taşındığı bölgelerde kullanılmaktadır.