Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.
Matematikte reel sayılar kümesi, Fransızca réel “gerçek” den gelmektedir. Oranlı sayılar kümesinin evrim sürecinden elde edilen bir varsayım kombinasyonudur. Reel sayılar kümesi sembolüyle gösterilir.
Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.
En çok kullanılan matematiksel sabitler pi sayısı, e sayısı ve i sayısıdır.
Pi sayısı , bir dairenin çevresinin çapına bölümü ile elde edilen irrasyonel matematik sabitidir. İsmini, Yunanca περίμετρον (çevre) sözcüğünün ilk harfi olan π harfinden alır. Pi sayısı, Arşimet sabiti ve Ludolph sayısı olarak da bilinir. Aynı zamanda ismini yunancada pie anlamına gelen πίτα' dan alır.
Matematikte logaritma, üstel işlevlerin tersi olan bir matematiksel fonksiyondur. Mesela, 1000'in 10 tabanına göre logaritması 3'tür çünkü 1000, 10'un 3. kuvvetidir,1000 = 10 × 10 × 10 = 103. Daha genel bir ifadeyle:
Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:
Karmaşık analizde kontür integrali veya kontür integrali almak karmaşık düzlemdeki yollar boyunca belli integralleri bulmak için kullanılan bir yöntemdir.
Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki e−x2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:
Sanal birim ya da i sayısı, x2 = -1 eşitliğini sağlayan bir sayıdır. Reel sayılar kümesindeki hiçbir sayının karesi negatif olamayacağı için, bu ikinci dereceden denklemi sağlayan fakat reel sayılar kümesine ait olmayan böyle bir sayı, genellikle i notasyonu ile gösterilir. i sayısı, ℝ ile gösterilen reel sayılar kümesini ℂ ile gösterilen kompleks sayılar kümesine genişleten ve sabit olmayan her bir P(x) polinomu için en az bir kök sağlayan matematiksel bir kavramdır. "Hayali" terimi negatif kareye sahip gerçek sayı olmadığı için kullanılır.
Cebirsel topoloji, topolojik uzayları cebirsel gereç ve yöntemlerle inceleyen matematik dalı. Matematikte bir kümenin üzerine döşenecek yapı, yönelinen matematik dalını belirler. Bir kümeye bir ya da birkaç işlem konarak sayılar kuramı ya da cebir yapmaya başlanabilir. Kümenin üzerine bir topoloji koyaraksa topoloji ve, ayrıca uzunluk koyarsak, geometri yapmaya başlanır. Üzerine topoloji konmuş bir uzayı incelemek için kimi cebirsel, aritmetik veya topolojik değişmezler tanımlanır; bunlar aracılığıyla topolojik uzayın özellikleri ayırdedilir. Örneğin tıkızlık, bağlantılılık, sayılabilirlik bu tür değişmezlerdir. Topolojik eşyapısal iki uzaydan biri bu değişmeze sahipse diğeri de buna sahip olmalıdır. Yani, eğer iki uzay için ayrı ayrı bakılan bir değişmez aynı değilse, bu iki uzay eşyapısal olmayacaktır. Yukarıda anılan en eski değişmezlerin hemen ardından inşa edilen klasik değişmezler cebirsel olanlardır.
Matematikte, Gauss sabiti, G ile gösterilir,1 ve karekök 2 aritmetik-geometrik ortalama'sının tersi olarak tanımlanır.
Fresnel integrali, S(x) ve C(x), iki transendental fonksiyon'dur. Augustin-Jean Fresnel'e atfedilmiştir ve optikte kullanılmaktadır. Yakın alan Fresnel difraksiyon fenomeninde ortaya çıkar; aşağıdaki integral gösterimi ile tanımlanırlar:
Matematikte temel fonksiyon, tek bir değişken, üs, logaritma, sabit ve n.kökten oluşan ve dört temel işlemin (+ – × ÷) bileşkesi ve kombinasyonu kullanılan fonksiyondur. Bu fonksiyonlar, reel sayılardan oluşan trigonometrik fonksiyonlar ve terslerinden de olabilir.
Çizilebilir sayı terimi, geometri ve cebirde kullanılır ve bir reel sayı 'nin, belirli koşullar altında bir çizgi olarak çizilebilip çizilemeyeceğini ifade eder. Eğer birim uzunlukta herhangi çizgiyi kullanarak, sadece pergel ve cetvel yardımıyla ve belirli sayıda adımda, r uzunluğunda bir başka çizgi çizebilirse, bu durumda r sayısı çizilebilir bir sayıdır. Başka bir deyişle, r sayısını, sadece tam sayıları ve temel matematik işlemleri ile karekök alma işlemini kullanarak açık bir şekilde ifade edebiliyorsa, r sayısı çizilebilir kabul edilir.
Matematikte, trigonometrik fonksiyonların değerleri gibi yaklaşık olarak veya gibi tam olarak ifade edilebilir. Trigonometrik tablolar birçok yaklaşık değer içerirken, belirli açılar için kesin değerler aritmetik işlemler ve karekök kombinasyonu ile ifade edilebilir. Bu şekilde ifade edilebilen trigonometrik değerlere sahip açılar tam olarak pergel ve düzeç ile inşa edilebilen açılardır ve bu değerlere inşa edilebilir sayılar denir.