İçeriğe atla

Aşırı düşük frekans

Aşırı düşük frekans (ADF) ya da ELF frekans aralığı 3 ile 30 Hz arasında değişen radyo dalgası bandıdır. Amerika Birleşik Devletleri Donanması ve Sovyet/Rus Donanması tarafından dalışa geçmiş denizaltılarla iletişimde kullanılmıştır.

Açıklama

Deniz suyunun iletkenliği denizaltılarla elektromanyetik iletişime büyük ölçüde engeldir. Yine de ADF frekans aralığındaki sinyaller deniz suyunun daha derinlerine ulaşmada başarılıdırlar. ADF iletişim kanallarının kullanışlılığını iki etken sınırlar: denizaltılara dev bir verici yerleştirmenin pratik imkânsızlığından kaynaklanan tek yönlü iletişim ve daha önemlisi dakikada birkaç harflik düşük veri aktarım hızı. Bu nedenle ADF sinyallerine çoğunlukla denizaltılara, farklı iletişim yollarının kullanılmasının uygun olduğu düşük derinliklere yükselme emri vermek için başvurulur.

ADF iletişiminin güçlükleri

ADF bandında yayın yapmanın başlıca güçlüklerinden biri vericinin büyüklüğüdür. Vericinin ölçüleri, üretilmek istenen elektromanyetik dalganın dalgaboyu oranında (en azından onda biri) olmak zorundadır. Örneğin 1 Hz'lik (saniyede bir vuruş) bir sinyalin dalgaboyu, elektromanyetik dalgaların söz konusu ortamda (denizsuyu için elektromanyetik dalgaların hızı, ışığın boşluktaki hızından önemsenmeyecek bir oranda daha küçüktür) 1 saniyede kattettiği yola eşit olacaktır. Rus donanmasının 3–30 Hz'lik sinyaline karşılık Amerikan Donanması günümüzde yaklaşık 50–85 Hz'lik ADF sinyalleri kullanmaktadır. Bu nedenle ADF dalgaboyu saniyede ~299 792 km'nin 50–85 Hz'e bölünmesiyle hesaplanır. Bu da 3450–5996 km aralığına karşılık gelir. (Karşılaştırmak için Dünya'nın kutuplardan ölçülmüş çapının 12715 km, ekvatordan ölçülenin ise 12756 km olduğu hatırlanabilir.) Bu dev ölçü gereksinimi ADF sinyallerinin uluslararası menzillerde iletilmesi isteği ile birleşince dünyanın tamamının yerin derinliklerine inen çok uzun kablolarla birlikte anten olarak kullanılmasını gerektirir. Çok daha küçük verici istasyonların inşa edilebilmesi için elektriksel uzatma (electrical lengthening) gibi çeşitli yöntemler kullanmak gerekir.

Amerika Birleşik Devletleri, 2004 Eylül'ünün sonlarında başlayan sökümlerine dek, biri Wisconsin Chequamegon-Nicolet Ulusal Ormanı'nda diğeri Michigan Escanaba Nehri Eyalet Ormanı'nda (yapımından önce, Sanguine Projesi olarak isimlendirilmiş ancak daha sonra yatırımların küçültülmesiyle ismi de EDF Project (ADF Projesi) olarak değiştirilmiştir) olmak üzere iki vericiye sahipti. Her ikisinin bağlantılarında da zemin dipolü olarak da adlandırılan uzun mesafe güç hatları kullanılmıştır. Bu hatların kabloları çapı 22.5 ile 45 arasında değişen teller bütününden oluşuyordu. Bu yöntemin verimsizliği nedeniyle sistemi çalışır durumda tutmak için dikkate değer oranda elektrik gücü gerekiyordu.

Diğer kullanımlar

20 Hz'lik vericiler ayrıca Boru hattı denetim ölçerlerinde (İng: ) de bulunmaktadır. Gönderilen sinyaller genellikle ölçerin boru hattında sıkıştığında izlenebilmesi amacıyla kullanılır.

Kimi amatör radyocular da, ev yapımı büyük antenlerle ADF (hatta daha düşük) sinyalleri kaydedip bunları yüksek hızlarda yeniden çalarak dünyanın elektromanyetik alanının doğal dalgalanmalarının sesini yakalamaya çalışmaktadırlar. Burada manyetik bantların hızlarının yükseltilmesi sinyallerin frekansını artırarak duyulabilir ses aralığına aktarılmasını sağlar.

Doğal ADF dalgaları

Doğal ADF dalgaları yeryüzü ile iyonosfer katmanı arasında bulunur. Atmosferdeki elektronların titreşmesine yol açan yıldırımlar tarafından başlatılır. Dünya ve iyonosfer arasındaki bölgenin temel frekansına karşılık gelen dalgaboyu dünyanın çevre uzunluğuna eşittir, bu da 7.8 Hz'lik bir rezonans frekansına karşılık gelir. Bu frekans (ve daha yüksek rezonans frekansları: 14, 20, 26 ve 32 Hz) ADF aralığındaki tepe noktalarıdır ve Schumann Rezonsı olarak adlandırılır.

ADF sinyalleri kesin olmamakla birlikte Satürn'ün uydusu Titan da saptanmışlardır. Titan'ın yüzeyinin zayıf bir ADF yansıtıcısı olduğu sanılmaktadır, bu nedenle bazı teorik modellere göre ADF sinyallerinin okyanus sularının amonyakla yaptığı derin yüzeyden yansıdığı tahmin edilmektedir. Ayrıca Titan'ın iyonosferi, 1200 km yükseklikteki ana iyonesfere ek olarak 63 km yükseklikte başka yüklü parçacık katmanına sahip olmasıyla Dünyanınkinden çok daha karmaşık bir yapı gösterir. Bu bir anlamda Titan'ın atmosferinin titreşen iki ayrı bölgeye ayrılması demektir. Yoğun yıldırımların gözlemlenmeyişi Titan'ın doğal ADF dalgalarının kaynağı hakkında belirsizliklere yol açar.

Magnetarlar, Güneş'in görünür ışık tayfında yaptığı ışımanın 100.000 katına denk bir güç çıkışıyla ADF dalgası yayarlar. Yengeç Bulutsusundaki pulsar 30 Hz frekansında, bu güçte ışımaktadır. Bu frekanstaki ışıma, yıldızlar arası ortamın plazma frekansının altındadır, böylece yıldızlar arası ortam bu ışımaya opaktır ve ışıma Dünya'dan gözlemlenemez.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Frekans</span> bir olayın birim zaman (genel olarak 1 saniye) içinde hangi sıklıkla, kaç defa tekrarlandığının ölçümü

Frekans veya titreşim sayısı bir olayın birim zaman içinde hangi sıklıkla, kaç defa tekrarlandığının ölçümüdür, matematiksel ifadeyle çarpmaya göre tersi ise periyot olarak adlandırılır.

<span class="mw-page-title-main">Hertz</span> SI birim sisteminde frekans birimi

Hertz, SI birim sisteminde frekans (sıklık) birimidir. İsmini elektromanyetik dalgaların var olduğunu ilk kanıtlayan kişi olan Alman fizikçi Heinrich Rudolf Hertz'den alır. Hertz'in yaygın kullanım alanlarından bazıları genelde sesle alakalı uygulamalarda kullanılan sinüs dalgaları ve müzik notalarını göstermektir. Hertz bazen de foton enerji eşitliği ile enerjiyi temsil etmek amacıyla da kullanılabilir.

<span class="mw-page-title-main">İyonosfer</span>

İyonosfer, atmosferin elektromanyetik dalgaları yansıtacak miktarda iyonların ve serbest elektronların bulunduğu 70 km ile 400 km lik kısmı. Termosferi tamamen kapsarken, mezosfer ve ekzosferin bir kısmını kapsar.

<span class="mw-page-title-main">Modülasyon</span>

Modülasyon ya da kipleme, bir taşıyıcı sinyal ile bilgi sinyalini birleştirmekten ibaret olan ve iletişim teknolojisinde (yayıncılıkta) kullanılan bir yöntemdir. Yöntem, başlarda anten yoluyla yapılan yayınlar için öngörülmüş ise de, günümüzde kablolu, kablosuz her tür iletişimde kullanılmaktadır. Çok alçak frekanslı sinyallerin çok uzak mesafelere gönderilmesi güçtür. Bu nedenle alçak frekanslı sinyalin, yüksek frekanslı taşıyıcı bir sinyal üzerine bindirilerek uzak mesafelere taşınması sağlanabilir. Bu noktada kiplemeye başvurulur.

<span class="mw-page-title-main">Radyo dalgaları</span> Radyo Dalgaları (Radio Waves)

Radyo dalgaları, radyo frekansı ile gerçekleşen elektromanyetik dalgalardır. Tel gibi somut bağlantılar kullanmadan, atmosfer içerisinde veri taşınmasına olanak tanırlar. Radyo dalgalarını diğer elektromanyetik dalgalardan ayıran özellikleri görece uzun dalgaboylarıdır.

<span class="mw-page-title-main">Analog televizyon vericisi</span>

Televizyon vericileri televizyon yayını yapan, yani stüdyolarda oluşturulan haber ve programların konutlardaki alıcılara ulaştırılmasını sağlayan en önemli teknik araçlardır. kablo ve uydu gibi alternatif yayın araçlarıyla karıştırmamak için TV vericileri bazen "yer vericileri" olarak da isimlendirilir.

Ses sinyali herhangi bir sesin iletilmek veya saklanmak için elektromanyetik enerjiye çevrilmiş halidir. Bu sinyal AF kısaltmasıyla da gösterilir.

Gürültü, elektronikte iletilmek istenen bilgi sinyaline karışan, istenmeyen sinyallere verilen isimdir.

<span class="mw-page-title-main">Frekans modülasyonu</span> frekans modülasyonu, İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türü

Frekans modülasyonu, İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türüdür. FM kısaltmasıyla gösterilir. Bu modülasyon türü 1933 yılında Amerikalı mühendis Edwin Howard Armstrong (1890-1954) tarafından geliştirilmiştir.

Radyo frekansı yayıncılıkta bir bilgi sinyali ile modüle edilmiş olan taşıyıcı sinyal anlamına gelir. Ancak, bu isim zamanla modüle edilsin, edilmesin, yüksek frekans anlamına da kullanılmaya başlanmıştır.

Aktarıcı, radyo ve televizyon yayıncılığında bir önceki istasyondan aldığı yayını değişik bir radyo frekansla yeniden yayınlayan yardımcı vericilere verilen addır. "Aktarıcı" terimi TRT kurumunda 1970'li yıllarda Fransızca transposer kelimesinin karşılığı olarak kullanılmaya başlamıştır. Buna karşılık halk arasında kullanılan yansıtıcı terimi yayıncılıkta kullanılmaz.

<span class="mw-page-title-main">Radyolink</span>

Radyolink iki nokta arasında elektromanyetik dalgalarla iletişim için kurulan düzenektir. Bu düzenekle sadece iki nokta arasında iletişim sağlanır. Yani radyo ve televizyon vericilerinin aksine yapılan yayın dar bir koridor içinde yönlendirilmiş yayındır ve bu dar koridor dışında izlenemez. Düzenek genellikle telefon santralleri arasında veya radyo televizyon stüdyoları ile radyo televizyon vericileri arasında kurulur.

<span class="mw-page-title-main">İyonlaştırıcı olmayan radyasyon</span> Düşük frekanslı radyasyon

İyonlaştırıcı olmayan radyasyon, bir atomdan veya molekülden bir elektronu tamamen koparabilmek için atomları veya molekülleri iyonlaştırabilecek yeterli enerji taşıyan kuantumlara sahip olmayan herhangi bir elektromanyetik radyasyon türüdür. Elektromanyetik radyasyon, maddenin içinden geçerken yüklü iyonlar üretmez. Yalnızca, bir elektronu daha yüksek enerji seviyesine çıkaran uyarım için yeterli enerjiye sahiptir. İyonlaştırıcı olmayan radyasyondan daha yüksek bir frekansa ve daha kısa dalga boyuna sahip olan iyonlaştırıcı radyasyon birçok kullanım alanına sahiptir, ancak sağlık için bir tehdit olabilir. İyonlaştırıcı radyasyona maruz kalmak yanıklara, radyasyon hastalıklarına, kansere ve genetik hastalıklara sebep olabilir. İyonlaştırıcı radyasyon kullanmak, iyonlaştırıcı olmayan radyasyon kullanılırken genelde gerekli olmayan dikkatli ve özenle alınmış radyolojik korunma önlemleri gerektirir.

<span class="mw-page-title-main">Uzun Dalga Bandı</span>

Uzun Dalga Bandı veya kısaca LW, telekomünikasyonda kullanılan bir yayın bandıdır. Her ülkeye bir istasyon koyarak kıtaya yayın yapabilir. Çok uzun mesafeye yayınlar için kullanılır. Genellikle TRT Radyo gibi ulusal kanallar ve uçak ve helikopterlerde kuleye iniş ve kalkış izni alınırken, durum sinyali olarak adlandırılan ve hava üssüne hava aracının durumunu gönderirken LW bandı kullanılır. Sinyalin menzili 600-800 kilometreye kadar çıkabilir. Genellikle zayıf sinyal verir. Bunun nedeni yayının çok yüksekten verilmesidir.

<span class="mw-page-title-main">Fiber optik iletişim</span>

Fiber optik iletişim ya da bilinen adıyla ışıklifi, optik lif boyunca ışık sinyalleri göndererek bilginin bir yerden başka bir yere iletilmesi metodudur. Işık, bilgi taşımak için yönlendirilmiş elektromanyetik taşıyıcı dalga görevi görür. İlk olarak 1970 yılında geliştirilen ışıklifli iletişim sistemleri; telekomünikasyon endüstrisinde devrim yaratmış, bilgi çağının gelişinde önemli bir rol oynamıştır. Elektriksel iletimden avantajlı olması nedeniyle ışıklifleri gelişmiş ülkelerdeki çekirdek ağlarda bakır tellerin iletişimdeki yerini aldı.

<span class="mw-page-title-main">Geçirim bandı</span>

Geçirim bandı elektronikte bir cihazın frekans spektrumunda kullandığı frekans bölgesidir. Bu bölge genellikle elektronik filtrelerle belirlenir. Geçirim bandını birimleri hertz (Hz) ya da üst katlarıdır. Geçirim bandı kavramı optikte de kullanılır. Ancak optikte geleneksel olarak dalga boyu birimleri kullanıldığı için optik geçirim bandı birimleri de saniyenin askatları veya ångström birimidir.

Orta Dalga, telekomünikasyonda kullanılan bir frekans bandının adıdır. Bu bant radyo yayıncılığına tahsis edilmiştir.

<span class="mw-page-title-main">Radyo vericisi</span>

Radyo vericileri radyo yayını yapan, yani stüdyolarda oluşturulan haber ve programların konutlardaki alıcılara ulaştırılmasını sağlayan teknik araçlardır. Programlar kent merkezlerindeki stüdyolarda hazırlanır. Stüdyolarda sesler ses sinyaline (AF) çevrilir. Ses sinyali kablo, radyolink veya uydu yardımıyla verici istasyonlara gelir. Yayın verici istasyondan yapılır.

<span class="mw-page-title-main">İletim ortamı</span> Conduit for signal propagation

İletim ortamı, telekomünikasyon amaçları için sinyallerin yayılmasına aracılık edebilen bir ortamdır. Sinyaller tipik olarak seçilen ortam için uygun bir tür dalgaya empoze edilmektedir. Örneğin, veriler sesi modüle edebilir ve sesler için bir iletim ortamı hava olabilir, ancak katılar ve sıvılar da iletim ortamı olarak işlev görebilmektedir. Vakum veya hava, ışık ve radyo dalgaları gibi elektromanyetik dalgalar için iyi bir iletim ortamı oluşturmaktadır. Elektromanyetik dalgaların yayılması için maddi madde gerekli olmasa da, bu tür dalgalar genellikle içinden geçtikleri iletim ortamından, örneğin ortamlar arasındaki arayüzlerde absorpsiyon, yansıma veya kırılma ile etkilenmektedir. Bu nedenle, dalgaları iletmek veya yönlendirmek için teknik cihazlar kullanılabilmektedir. Bu nedenle, iletim ortamı olarak bir optik fiber veya bir bakır kablo kullanılmaktadır.