İçeriğe atla

Ağırlık

Ağırlık, bir cisme uygulanan kütleçekim kuvvetidir. Ağırlığın birimi newton'dur ve simgesi 'N' olarak gösterilir. Bir kiloluk bir cisim dünyada yaklaşık 9,8 Newtondur. Ölçü aracı dinamometredir. Kütleçekim kuvveti, çekim merkezinden uzaklaştıkça azalacağından Dünya'nın geoit şeklinden dolayı kutuplara gidildikçe artar, ekvatora gidildikçe azalır. (Kutuplar Yarıçapı:6357 km. Ekvator Yarıçapı: 6378 km.) .

Ağırlığın yönü yerçekimi kuvvetinin yönündedir. Bu neden dolayı bazı kitaplar Ağırlık kuvvetini vektörel bir ölçü olarak tanımlarken bazıları sadece kuvvetin büyüklüğünü düşünerek skaler olarak tanımlar.

Ağırlık merkezi

Kütleçekimi bir cismi oluşturan her parçaya ayrı ayrı etki eder, hepsi teker teker hesaplanamayacağından Klasik mekanikte cismin tüm ağırlığı tek bir noktadaymış gibi kabul edilir. Bu merkezin konumu, cismi oluşturan tüm noktalardaki ağırlık kuvvetlerinin ağırlıklı ortalaması ile bulunur. Kütle merkezinden farklı olarak cismin aşağı kısmı gezegene daha yakında olduğundan ağırlık merkezi, kütle merkezinden çok az da olsa daha aşağıdadır. Bu fark dünyadaki en uzun kule olan Burç Halife'de 0,1 milimetreden azdır.[1]

Ağırlık merkezinin bilinmesi, cisimlerin denge hallerini ve çeşitli yapıtların devrilmeden durabilmelerinin sağlanmasında yardımcı olur.

Yerçekimi ivmesi

Bir cismin ağırlığı, bulunduğu gezegenin ona ettiği kütleçekim kuvvetidir. Bu kütleçekim kuvveti, gezegenin kütlesi ve cismin kütlesinin çarpımına bağlı olduğundan ve ivme, kütle ile ters orantılı olduğundan cismin gezegene doğru ivmesi, cismin kendi kütlesine bağlı olmaz. Cisme bağlı olmayan bu ivmeye gezegenin yerçekimi ivmesi denir ve 'g' ile gösterilir. Bu sayede ağırlık daha basit bir yolla kütle ile yerçekimi ivmesinin çarpımı ile bulunabilir. Bundan başka merkezkaç kuvvetinin etkisiyle de cisimlerin ağırlıkları değişebilir. Merkezkaç kuvveti cismin kütlesinin açısal hızın karesi ve yarıçapla çarpılmasıyla bulunur.

Kütlesi 1 kg olan bir cisim
  • Güneş'te 247,2 N
  • Merkür'de 3,71 N
  • Venüs'te 8,87 N
  • Dünya'da 9,81 N
  • Ay'da 1,62 N (Ay'daki ağırlık Dünya'daki ağırlığın 6'da 1'idir.)
  • Mars'ta 3,77 N
  • Jüpiter'de 23,30 N
  • Satürn'de 9,2 N
  • Uranüs'de 8,69 N
  • Neptün'de 11 N
  • Plüton'da 0,06 N'dur.
1 kg'lık kütlenin ağırlığı Paris'te 9,81 N alınırsa
  • Ekvator'da 9,78 N
  • Kutuplarda 9,83 N
  • İstanbul'da 9,80 N
  • Ankara'da 9,78 N
  • Antalya'da 9,78 N ölçülür.

Kaynakça

  1. ^ "/johnvagabondscience.wordpress.com". 20 Mart 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Şubat 2021. 

İlgili Araştırma Makaleleri

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

<span class="mw-page-title-main">Yerçekimi</span> Dünyanın kütleçekimi

Yer çekimi, kütleçekimi ve merkezkaç kuvvetinin birleşik etkisi nedeniyle nesnelere aktarılan net ivmedir. Yönü bir şakul topuzuyla çakışan, gücü veya büyüklüğü normuyla temsil edilen vektörel bir niceliktir.

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">İvme</span> hızın büyüklüğü ve / veya hız yönünün zamanla değiştiği hız

Fizikte ivme, hızın zamana göre türevi olarak tanımlanır. Büyüklüğü uzaklık/zaman2 olan bir vektörel niceliktir ve cismin hem hızının hem de yönünün şiddetlerindeki değişimini gösterir. İvmeölçer yardımıyla ölçülen ivmenin SI birimi metre/saniye²'dir.

<span class="mw-page-title-main">Düzgün dairesel hareket</span>

Düzgün dairesel hareket, sabit bir kuvvetin etkisinde, bir çember üzerinde süratin değişmediği harekettir.

<span class="mw-page-title-main">Kütleçekim ivmesi</span> kütleçekim potansiyeli kaynaklı bir nesnedeki ivme

Kütleçekimi ivmesi, bir cismin kütleçekimi etkisiyle sahip olduğu ivmedir.

<span class="mw-page-title-main">Newton (birim)</span>

Newton, SI birim sisteminde kuvvet birimi olup simgesi N'dir. Terim, fizik bilimine yaptığı katkılar nedeni ile İngiliz bilim insanı Isaac Newton'un adı ile anılır.

Newton mekaniğinde merkezkaç kuvveti, dönen bir referans çerçevesinde bakıldığında tüm nesneler üzerinde etkili gibi görünen bir eylemsizlik kuvvetidir.

Kütleçekimsel potansiyel enerji veya Kütleçekimsel enerji, bir kütlenin kütleçekimi alanında bulunduğu yerden dolayı sahip olduğu enerjidir. Cisimlerin hareket halinde olmadıkları durumlarda sahip oldukları enerjiye potansiyel enerji denir. Bir cisim yerden daha yüksek bir noktaya kaldırıldığında yer çekimine karşı bir iş yapar. Yapılan bu iş cisimde enerji olarak depolanır ve cismin iş yapabilecek duruma gelmesine neden olur. Potansiyel enerjinin simgesi Ep ve birimi jouledir.

<span class="mw-page-title-main">Kütle merkezi</span>

Fizikte, uzaydaki ağırlığın dağılımının ağırlık merkezi, birbirlerine göre olan ağırlıkların toplamlarının sıfır olduğu noktadır. Ağırlık dağılımı, ağırlık merkezi etrafında dengelenir ve dağılan ağırlığın kütle pozisyon koordinatlarının ortalaması onun koordinatlarını tanımlar. Ağırlık merkezine göre formüle edildiği zaman mekanikte hesaplamalar basitleşir.

<span class="mw-page-title-main">Newton'un evrensel kütleçekim yasası</span> Fizik kanunu

Newton'un evrensel çekim yasası (klâsik mekaniğin bir parçasıdır) aşağıdaki gibi ifade edilir;

Her bir noktasal kütle diğer noktasal kütleyi, ikisini birleştiren bir çizgi doğrultusundaki bir kuvvet ile çeker. Bu kuvvet bu iki kütlenin çarpımıyla doğru orantılı, aralarındaki mesafenin karesi ile ters orantılıdır:

Burada:

  • F iki kütle arasındaki çekim kuvvetinin büyüklüğü,
  • G Evrensel çekim sabiti 6.67 × 10-11 N m2 kg-2,
  • m1 birinci kütlenin büyüklüğü,
  • m2 ikinci kütlenin büyüklüğü,
  • r ise iki kütle arasındaki mesafedir.
<span class="mw-page-title-main">Kütle çekimi sabiti</span> nesneler arasındaki yerçekimi kuvvetini kütleleri ve mesafeleriyle ilişkilendiren fiziksel sabit

Kütleçekim sabiti MKS sisteminde yaklaşık 6,67x10ˉ¹¹ değerine sahiptir ve de G harfi ile gösterilir.

<span class="mw-page-title-main">Kurtulma hızı</span> bir cismin kendisini bağlayan kütleçekim alanından kurtulak için varması gereken hız

Fizikte, kurtulma hızı kütleçekim alanındaki herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cismin kendisini etkileyen kütleçekim alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.

<span class="mw-page-title-main">Dairesel yörünge</span>

Astrodinamikte dışmerkezliği sıfıra eşit olan eliptik yörünge olarak özetlenebilecek dairesel yörünge, tanım olarak fizikte sabit eksen etrafında rotasyonun tipik bir örneğidir. Burada bahsedilen eksen, hareket düzlemine dik olarak kütle merkezlerinden geçen doğrudur.

Schwarzschild yarıçapı, her kütle ile ilişkilendirilen karakteristik bir yarıçaptır. Verilen bir kütle bu yarıçapa kadar sıkıştırılırsa bilinen hiçbir kuvvet onun uzay zaman tekilliğine çökmesini engelleyemez. Schwarzschild yarıçapı terimi fizikte ve astronomide özellikle de kütleçekim ve genel görelilik teorilerinde kullanılır.

Genel görelilik fiziğinde, eşdeğerlik ilkesi, kütleçekimsel kütle ve eylemsiz kütle arasındaki eşdeğerlikle ilgilenen çeşitli kavramlardan biridir. Einstein'in gözlemlerine göre büyük kütleli bir cismin üzerinde durulduğunda hissedilen kütleçekimsel kuvvet, eylemsiz olmayan (ivmeli) referans çerçevesindeki bir gözlemcinin hissettiği uydurma kuvvetle aynıdır.

<span class="mw-page-title-main">Kütleçekimsel elektromanyetizma</span>

Kütleçekimsel Elektromanyetizm, kısaltılmışı KEM, elektromanyetizm ve göreli kütleçekimi arasındaki eşitliklerin benzeşiklerinden oluşan bir settir; Özellikle: Maxwell'in alan eşitliği ve yakınsaması ve bazı durumlarda Einstein'ın genel göreliliğindeki alan eşitliklerinden bulunabilir. Kütleçekimsel manyetizm genelde özellikle kütleçekiminin kinetik etkilerini belirtmek için kullanılır, hareketli elektrik yükünün manyetik etkilerinin benzeşiğidir. KEM, yalıtılmış sistemlerden uzakta olduğunda ve yavaş hareket eden deney parçacıklarında daha geçerli ve doğrudur. 1893'te ilk kez genel görelilikten önce, Oliver Heaviside tarafından yayınlandığından beri benzeşiğinde ve eşitliklerinde çok az değişiklik olmuştur.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

<span class="mw-page-title-main">Ekvatoral şişkinlik</span>

Ekvatoral şişkinlik, bir gezegenin ekvatoral ve kutupsal çapları arasında, gök cisminin kendi ekseni etrafında dönerken uyguladığı merkezkaç kuvveti nedeniyle oluşan farktır. Dönen bir gök cismi, küre yerine basık bir sferoit oluşturma eğilimindedir.