İçeriğe atla

Açıortay teoremi

Şekilde 'dir.

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

Teorem

Bir üçgeni düşünün. açısının açıortayının ile arasındaki noktasında kenarını kesmesine izin verin. Açıortay teoremi, doğru parçasının uzunluğunun parçasının uzunluğuna oranının kenarının uzunluğunun kenarının uzunluğuna oranına eşit olduğunu belirtir:

ve tersine, üçgeninin kenarındaki noktası 'yi ve kenarları ile aynı oranda bölerse, daha sonra , açısının açıortayıdır.

Genelleştirilmiş açıortay teoremi, eğer , doğrusu üzerinde yer alıyorsa, o zaman

, 'nin açıortayıysa bu ifade, önceki sürüme indirgenir. , bölümünün dışında olduğunda, hesaplamada yönlendirilmiş çizgi bölümleri ve yönlendirilmiş açılar kullanılmalıdır.

Açıortay teoremi, açıortayları ve yan uzunlukları bilindiğinde yaygın olarak kullanılır. Bir hesaplamada veya bir ispatta kullanılabilir.

Teoremin doğrudan bir sonucu, bir ikizkenar üçgenin tepe açısının açıortayının aynı zamanda karşı kenarı ikiye böldüğüdür.

İspatlar

İspat 1

Yukarıdaki diyagramda, ve üçgenlerinde sinüs teoremi kullanıldığında:

   

 

 

 

 

(1)

   

   

 

 

 

 

(2)

   

ve açıları doğrusal bir çift oluşturur, yani bitişik bütünler açılar'dır. Bütünler açılar eşit sinüslere sahip olduğundan,

ve açıları eşittir. Bu nedenle, denklemlerin sağ tarafları (1) ve (2) eşittir, bu nedenle sol tarafları da eşit olmalıdır.

bu da açıortay teoremi'dir.

ve açıları eşit değilse, denklemler (1) ve (2) şu şekilde yeniden yazılabilir:

ve açıları hala bütünlerdir, bu nedenle bu denklemlerin sağ tarafları hala eşittir, dolayısıyla şunu elde ederiz:

bu ifade, teoremi "genelleştirilmiş" versiyona göre yeniden düzenler.

İspat 2

, doğrusu üzerinde bir nokta olsun, veya 'ye eşit olmasın ve , üçgeninin bir yüksekliği olmasın (yani doğrusuna dik olmasın).

, üçgeninin noktasından çizilen yüksekliğinin tabanı olsun ve , üçgeninin noktasından çizilen yüksekliğinin tabanı olsun. Daha sonra, kesinlikle ile arasındaysa, veya 'den biri ve yalnızca biri, üçgeninin içinde yer alır ve 'in genelliği kaybetmeden yaptığı varsayılabilir. Bu durum yandaki şekilde tasvir edilmiştir. , segmentinin dışında yer alıyorsa, o zaman ne ne de üçgenin içinde yer alır.

ve dik açılar iken, , segmentinde yer alıyorsa (yani, ve arasında) ve açıları eş açılardır ve dikkate alınan diğer durumlarda aynıdır, bu nedenle üçgenler ve benzerdir (AAA), yani

bir yüksekliğin tabanıysa, o zaman,

ve genelleştirilmiş biçime ulaşılır.

İspat 3

Hızlı bir kanıt, 'daki açıortay ile oluşturulan ve üçgenlerinin alanlarının oranlarına bakılarak elde edilebilir. Bu alanları farklı formüller kullanarak iki kez hesaplamak, yani taban ve yükseklik olmak üzere şeklinde ve , kenarlar ve bu kenarlar arasındaki açı olmak üzere şeklinde hesaplamak mümkün olup istenen sonucu verecektir.

, tabanı olan üçgenlerin yüksekliği ve 'daki açının yarısı olsun. Sonra,

ve

buradan da

bulunur.

Dış açıortaylar

Dış açı ortaylar (kırmızı nokta ile gösterilen):
, , noktaları eşdoğrusaldır ve oranlar için aşağıdaki denklemler geçerlidir:
, ,

Eşkenar olmayan bir üçgendeki dış açıortaylar için, üçgen kenarlarının uzunluklarının oranları arasında benzer denklemler vardır. Daha doğrusu, 'daki dış açıortay 'de uzatılmış kenar ile kesişiyorsa, 'deki dış açıortay 'de uzatılmış kenar ile kesişir ve 'deki dış açı açıortay uzatılmış kenar ile 'de kesişir, ardından aşağıdaki denklemler geçerli olur:[1], ,

Dış açıortayları ile uzatılmış üçgen kenarları , ve arasındaki üç kesişme noktası eşdoğrusaldır, yani bir ortak çizgi üzerindedir.[2]

Tarihçe

Açıortay teoremi, Öklid'in Elemanları Kitap VI'nın Önerme 3'ü olarak görünür. Heath (1956, s. 197 (cilt 2))'e göre, dış açıortay için karşılık gelen ifade Robert Simson tarafından verildi ve Pappus bu sonucu kanıt olmadan doğru varsaydı. Heath, Augustus De Morgan'ın iki ifadenin aşağıdaki gibi birleştirilmesini önerdiğini söyler:[3]

Bir üçgenin bir açısı, karşı kenarı veya zıt kenarı kesen düz bir çizgi ile içten veya dıştan ikiye bölünürse, o tarafın dilimleri üçgenin diğer kenarları ile aynı orana sahip olacaktır ve eğer bir üçgenin bir kenarı, parçalarının üçgenin diğer kenarlarıyla aynı orana sahip olması için içten veya dıştan bölünüyorsa, kesit noktasından ilk bahsedilen kenarın karşısındaki açısal noktaya çizilen düz çizgi bu açısal noktada iç veya dış açıyı ikiye böler.

Notlar

  1. ^ Alfred S. Posamentier: Advanced Euclidian Geometry: Excursions for Students and Teachers. Springer, 2002, 9781930190856, pp. 3-4
  2. ^ Roger A. Johnson: Advanced Euclidean Geometry. Dover 2007, 978-0-486-46237-0, p. 149 (original publication 1929 with Houghton Mifflin Company (Boston) as Modern Geometry).
  3. ^ Heath, Thomas L. (1956). The Thirteen Books of Euclid's Elements (2. ed. [Facsimile. Original publication: Cambridge University Press, 1925] bas.). New York: Dover Publications. 
    (3 cilt): 0-486-60088-2 (cilt 1), 0-486-60089-0 (cilt 2), 0-486-60090-4 (cilt 3). Heath'in yetkili çevirisi ile birlikte kapsamlı tarihsel araştırma ve metin boyunca ayrıntılı yorumlar içerir.

Konuyla ilgili yayınlar

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pisagor teoremi</span> Öklid geometrisinde bir dik üçgenin üç kenarı arasındaki bağıntı

Pisagor teoremi veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Sinüs teoremi</span> Öklid geometrisinde üçgenlerle ilgili bir teorem

Sinüs teoremi, bir çembersel üçgende bir kenar ve bu kenar karşısındaki açının sinüsleri oranı sabittir. Sinüs, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün birbirine oranıdır.

<span class="mw-page-title-main">Ceva teoremi</span> Öklid düzlem geometrisinde bir üçgenin kenar doğru parçası çiftlerinin çarpımlarının oranının bire eşit olduğunu belirten teorem

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

<span class="mw-page-title-main">Açıortay</span>

Açıortay, geometride bir açıyı iki eşit açı şeklinde bölen yapıdır. Bir açıya teğet tüm çemberler çizilerek merkezleri birleştirilirse, o açının açıortayı elde edilir. Bu nedenle açıortaylardan açının kollarına indirilen dikmeler, o çemberlerden birinin merkezinden teğetlere inilen yarıçap dikmeleri olacağından, dikmeler birbirine eşit olur. Her iki kolda oluşan üçgenler de birbirine eşit olacağından, dikmelerin açıortay kollarını kestiği noktalar ile açının bulunduğu köşeye olan uzaklıklar eşit olur.

<span class="mw-page-title-main">İkizkenar üçgen</span>

İki kenarı birbirine eşit olan çokgenlerdir. İç açıları toplamı 180°'dir.

<span class="mw-page-title-main">Kosinüs teoremi</span>

Kosinüs teoremi, geometride, üçgen üzerinde iki kenarı ve aralarındaki açı verilmiş iken bilinmeyen kenarı bulmak amacıyla kullanılan formüldür. Şekil 1'deki üçgene göre kosinüs teoreminin uygulanışı şöyledir:

<span class="mw-page-title-main">Menelaus teoremi</span> Bir üçgenin her bir kenar doğrusundan tepe noktası olmayan birer nokta olmak üzere üç noktanın, ancak ve ancak her üç kenar doğrusu üzerinde belirledikleri işaretli oranların çarpımı -1 ise eş doğrusal olduğunu belirten Öklid geometri

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

<span class="mw-page-title-main">Brocard noktaları</span>

Brocard noktaları, geometride bir üçgen içinde yer alan özel noktalardır. Fransız matematikçi Henri Brocard'ın çalışmalarından dolayı bu adı almıştır.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Crossbar (Pasch) teoremi</span> Diğer iki ışın arasındaki bir ışın, ilk iki ışın arasındaki herhangi bir çizgi parçasını keser.

Geometride Crossbar (Pasch) teoremi, ışını ışını ile ışını arasındaysa, ışınının doğrusu parçasını keseceğini belirtir.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Brahmagupta teoremi</span>

Geometride, Brahmagupta teoremi, eğer bir kirişler dörtgeni ortodiyagonal ise, o zaman köşegenlerin kesişme noktasından bir kenara çizilen dikmenin karşı kenarı daima ikiye böldüğünü belirtir. Adını Hint matematikçi Brahmagupta'dan (598-668) almıştır.

Dış açı teoremi, bir üçgenin bir dış açısının ölçüsünün, uzak iç açılarının ölçülerinden daha büyük olduğunu belirten Ökllid'in Elemanlar'ı Önerme 1.16'dır. Bu, mutlak geometride temel bir sonuçtur çünkü ispatı paralellik postülatına bağlı değildir.

<span class="mw-page-title-main">Euler teoremi (geometri)</span>

Geometride, Euler teoremi, üçgenin çevrel çemberinin merkezi ve iç teğet çemberinin merkezi arasındaki uzunluğunun aşağıdaki şekilde ifade edildiğini belirtir:

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Kesişen kirişler teoremi</span>

Kesişen kirişler teoremi veya sadece kiriş teoremi, bir çember içinde kesişen iki kiriş tarafından oluşturulan dört doğru parçasının ilişkisini tanımlayan temel geometrideki bir ifadedir. Her bir kirişteki doğru parçalarının uzunluklarının çarpımlarının eşit olduğunu belirtir. Öklid'in Unsurlarının 3. kitabının 35. önermesidir.

<span class="mw-page-title-main">Kesişen kesenler teoremi</span>

Kesişen kesen (sekant) teoremi veya sadece kesen (sekant) teoremi, kesişen iki sekant ve ilişkili çember tarafından oluşturulan doğru parçalarının ilişkisini açıklayan temel bir geometri teoremidir.

<span class="mw-page-title-main">Kirişler dörtgeni</span> tüm köşeleri tek bir çember üzerinde yer alan dörtgen

Öklid geometrisinde, bir kirişler dörtgeni veya çembersel dörtgen veya çevrimsel dörtgen, köşeleri tek bir çember üzerinde bulunan bir dörtgendir. Bu çembere çevrel çember denir ve köşelerin aynı çember içinde olduğu söylenir. Çemberin merkezi ve yarıçapı sırasıyla çevrel merkez ve çevrel yarıçap olarak adlandırılır. Bu dörtgenler için kullanılan diğer isimler eş çember dörtgeni ve kordal dörtgendir, ikincisi, dörtgenin kenarları çemberin kirişleri olduğu içindir. Genellikle dörtgenin dışbükey (konveks) olduğu varsayılır, ancak çapraz çevrimsel dörtgenler de vardır. Aşağıda verilen formüller ve özellikler dışbükey durumda geçerlidir.