İçeriğe atla

2-Piridon

2-Piridon
2-Piridon
2-Piridon
2-Piridon molekülü (laktam formu)
2-Piridon molekülü (laktam formu)
2-Piridon molekülü (laktim formu)
2-Piridon molekülü (laktim formu)
Adlandırmalar
Piridin-2(1H)-bir
2(1H)-Piridonon
2(1H) -Piridon
1H -Piridin-2-bir
2-Piridon
1,2-Dihidro-2-oksopiridin
1H -2-Piridon
2-Oksopiridon
2-Piridinol
2-Hidroksipiridin
Tanımlayıcılar
CAS numarası
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.005.019 Bunu Vikiveri'de düzenleyin
RTECS numarası
  • UV1144050
CompTox Bilgi Panosu (EPA)
  • InChI=1/C5H5NO/c7-5-2-1-3-6-4-5/h1-4,7H (InChIKey: GRFNBEZIAWKNCO-UHFFFAOYAT)
    1/C5H5NO/c7-5-3-1-2-4-6-5/h1-4H,(H,6,7) (InChIKey: UBQKCCHYAOITMY-UHFFFAOYAK)
  • Oc1ccccn1 (laktim)
    C1=CC=CNC(=O)1 (laktam)
Özellikler
Kimyasal formülC5H5NO
Molekül kütlesi95,10 g mol−1
Görünüm Renksiz kristal katı
Yoğunluk1.39 g/cm³
Erime noktası107.8 °C
Kaynama noktası280 °C bileşenlerine ayrışır
ÇözünürlükSu
metanol
aseton
Asitlik (pKa) 11.65
Yapı
Ortorombik
Düzlemsel
Tehlikeler
İş sağlığı ve güvenliği (OHS/OSH):
Ana tehlikeler Tahriş edici
GHS etiketleme sistemi:
R-ibareleriR36 R37 R38
G-ibareleriS26 S37/39
NFPA 704
(yangın karosu)
Parlama noktası210 °C
Aksi belirtilmediği sürece madde verileri, Standart sıcaklık ve basınç koşullarında belirtilir (25 °C [77 °F], 100 kPa).

2-Piridon, C5H4NH(O) formülüne sahip organik bir bileşiktir. Renksiz bir katıdır. Hidrojen bağlı dimerler oluşturduğu iyi bilinmektedir ve tautomerler olarak var olan bir bileşiktir.

Yapı

Amid grubu, bileşiğin diğer azot ve oksijen içeren türlere hidrojen bağı ile bağlanmasında rol oynayabilir.

Totomerizm

tautomerism
tautomerism

Nitrojene bağlı proton aynı zamanda ikinci totomer form olan 2 -hidroksipiridini oluşturacak şekilde oksijene doğru da hareket edebilir. Bu laktam laktim totomerizmi birçok alakalı bileşikte de sergilenebilir.[1]

Katı halde totomerizm

2-piridon baskın katı hal formudur ve bu durum, katı haldeki hidrojenin nitrojene oksijene oranla daha yakın olduğunu (hidrojenin düşük elektron yoğunluğu nedeniyle konumun tam tespiti zordur) gösteren, X-ışını kristalografisi ve -OH frekanslarının olmadığı ve C=O boyuna frekansının mevcut olduğu- IR-spektroskopisi ile doğrulanmıştır.[2][3][4][5]

Çözeltide totomerizm

İki totomerik formun hangisinin çözeltide mevcut olduğunun belirlenmesi birçok yayının konusu olmuştur. Enerji farkı çok küçük görünmektedir ve çözücünün polaritesine bağlıdır. Polar olmayan çözücüler 2-hidroksipiridin oluşumunu, alkol ve su gibi polar çözücüler ise 2-piridon oluşumunu desteklemektedir.[1][6][7][8][9][10][11][12][13]

Gaz fazındaki iki totomerin enerji farkı IR-spektroskopisi ile katı halde 2.43 ila 3.3 kJ/mol ve sıvı halde 8.95 kJ/mol ve 8.83 kJ/mol olarak ölçüldü.[14][15][16]

Totomerizasyon mekanizması A

Tek moleküler totomerizasyon, yasaklanmış 1-3 süprafasiyal geçiş durumuna sahiptir ve bu nedenle bu totomerizasyon yüksek bir enerji bariyerine (125 veya 210 kJ/mol olduğu teorik yöntemlerle hesaplanmıştır) sahiptir. Doğrudan totomerizasyon enerjitik sebeplerden dolayı tercih edilmez. Bu totomerizasyon için başka olası mekanizmalar da vardır.[16]

Dimerizasyon

dimer

2-Piridon ve 2-hidroksipiridin, iki hidrojen bağıyla dimerler oluşturabilir.[17]

Katı halde birleşme

Katı halde, dimerik form mevcut değildir; 2-piridonlar, hidrojen bağları üzerinde sarmal bir yapı oluşturur. Bazı ikame edilmiş 2-piridonlar, katı halde dimer oluşturur (örneğin 5-metil-3-karbonitril-2-piridon). Bütün bu yapıların tespiti X-ışını kristalografisi ile yapılmıştır. Katı halde hidrojen, oksijene daha yakın bir konumda yer alır, bu durumda ortamdaki renksiz kristalleri 2-piridon olarak adlandırmanın doğru olduğu düşünülebilir.[1][2][3][4][5]

Çözeltide birleşme

Solüsyonda dimerik form mevcuttur; dimerizasyon oranı büyük oranda çözücünün polaritesine bağlıdır. Polar ve protik çözücüler hidrojen bağları ile etkileşime girer ve daha fazla monomer oluşur. Polar olmayan çözücülerdeki hidrofobik etkiler, dimerin baskın olmasına yol açar. Totomerik formların oranı da çözücüye bağlıdır. Mümkün olan tüm totomerler ve dimerler ortamda mevcut olabilir ve bir aralarında denge oluşturabilirler ve sistemdeki tüm denge sabitlerinin tam olarak ölçülmesi oldukça zordur.[17][18][19][20][21][22][23][24][25][26]

(NMR-spektroskopisi yavaş bir yöntemdir, çözücüde yüksek çözünürlüklü IR-spektroskopisi zordur, UV-spektroskopisinde geniş absorpsiyon, 3 ve daha fazla benzer molekülün ayırt edilmesini zorlaştırır).

Bazı yayınlar sadece iki olası modelden birine odaklanır ve diğerinin etkisini ihmal eder. Örneğin, iki totomerin polar olmayan bir çözelti içindeki enerji farkının hesaplanması, bir denge durumunda dimer tarafında büyük miktarda madde bulunması halinde yanlış bir sonuca neden olacaktır.

Totomerizasyon mekanizması B

Doğrudan totomerizasyon enerjik sebeplerden dolayı tercih edilmez, fakat çift proton transferi ve ayrışmasının takip eden bir dimerizasyon, bir totomerden diğerine kendiliğinden gerçekleşen katalitik bir yoldur. Protik çözücüler totomerizasyon sırasında proton transferine de aracılık ederler.

Sentez

2-Piron, bir siklizasyon reaksiyonu ile elde edilebilir ve amonyak ile bir değişim reaksiyonu yoluyla 2-piridona dönüştürülebilir:

2-pirandan 2-piridon sentezi

Piridin, hidrojen peroksit gibi bazı oksidasyon ajanları ile bir N-oksit oluşturur. Bu piridin-N-oksit, asetik anhidrit'de 2-piridine karşı bir yeniden düzenleme reaksiyonuna girer:[27][28][29] piridin-N-oksitten 2-Piridon sentezi

"Guareschi-Thorpe yoğuşması"nda siyanoasetamid bir 1,3-diketon ile reaksiyona girerek 2-piridon üretir.[18][30]

Analitik veri

1H-NMR

1H-NMR (400 MHz, CD3OD): /ρ = 8.07 (dd,3J = 2.5 Hz,4J = 1.1 Hz, 1H, C-6), 7.98 (dd,3J = 4.0 Hz,3J = 2.0 Hz, 1H, C-3), 7.23 (dd,3J = 2.5 Hz,3J = 2.0 Hz, 1H, C-5), 7.21 (dd,3J = 4.0 Hz,4J = 1.0 Hz, 1H, C-4)

13C-NMR

(100.57 MHz, CD3OD): ρ = 155.9 (C-2), 140.8 (C-4), 138.3 (C-6), 125.8 (C-3), 124.4 (C-5)

UV/Vis spektroskopisi

(MeOH):νmax (lg ε) = 226.2 (0.44), 297.6 (0.30).

IR spektroskopisi

(KBr): ν = 3440 cm−1–1 (br, m), 3119 (m), 3072 (m), 2986 (m), 1682 (s), 1649 (vs), 1609 (vs), 1578 (vs), 1540 (s), 1456 (m), 1433 (m), 1364 (w), 1243 (m), 1156 (m), 1098 (m), 983 (m), 926 (w), 781 (s), 730 (w), 612 (w), 560 (w), 554 (w), 526 (m), 476 (m), 451 (w).

EI-MS (70 eV): m/z (%) = 95 (100) [M+], 67 (35) [M+ - CO], 51 (4)[C4H3+].

Kimyasal özellikler

Katalitik aktivite

2-Piridon, proton bağımlı reaksiyonları, örneğin esterlerin aminolizini katalize eder. Bazı durumlarda, erimiş 2-piridon çözücü olarak kullanılır. Şekerlerin mutarotasyonu ve 2-piridon, tatomerizasyonuna ve bir ditopik reseptör olarak davranmasına atfedilen, polar olmayan çözücü içinde, aktif esterlerin, aminlerle reaksiyona girmesi üzerinde büyük bir etkiye sahiptir. Mevcut akademik ilgi, 2-piridon ve totomerinden proton transferi reaksiyonunun mekanizmasındaki hız belirleyen adımı izotop etiketleme, kinetik ve kuantum kimyasal yöntemler kullanarak tespit etme üzerinedir.[22][23][31]

Koordinasyon kimyası

2-Piridon ve bazı türevleri, koordinasyon kimyasında ligand olarak yer alırlar ve genellikle karboksilatlara benzer bir 1,3-köprü ligand olarak görev yaparlar.[24]

Doğa

2-Piridon doğal olarak oluşmaz, ancak bu molekülün bir türevi bazı hidrojenazlardan kofaktör olarak izole edilmiştir.[25]

Çevresel davranış

2-Piridon, toprak ortamında mikroorganizmalar tarafından hızla bozulur, yarı ömrü bir haftadan azdır.[26] 2-piridon üzerinde, bu kimyasalı tek bir karbon, azot ve enerji kaynağı olarak kullanarak, çoğalabilen organizmalar, birkaç araştırmacı tarafından izole edilmiştir. En kapsamlı çalışılan 2-piridon parçalayıcı gram pozitif bakteri olan Arthrobacter crystalopoietes,.[32] 2-Piridon bozunması yaygın olarak mono-oksijenaz aktivitesi ile başlatılır ve bir diolle sonuçlanır. Arthrobacter crystalopoietes durumunda, bozunma yolağının en azından bir kısmı plazmit kaynaklıdır.[33] Piridin dioller, yoğun renkli pigmentler oluşturmak için çözeltide kimyasal dönüşüme uğrarlar. Kinolin yıkımında[34] ve metabolitlerin transformasyonunda da benzer pigmentler gözlenmiştir. Bununla birlikte ikame edilmemiş piridin veya pikolin gibi birçok piridin çözücüsünün bozunmasında rapor edilen sarı pigmentler genellikle bu çözücülerin varlığında riboflavinin aşırı üretilmesinden kaynaklanır.[35] Genel olarak söylemek gerekirse, piridonların, dihidroksipiridinlerin ve piridinkarboksilik asitlerin bozulmasına genellikle oksijenazlar aracılık eder, buna karşın piridin çözücülerin bozulması için çoğu zaman bu durum geçerli değildir ve bazı durumlarda bir başlangıç indirgeyici aşamayı içerebilir.[33]

Ayrıca bakınız

Notlar

  1. ^ a b c Forlani L.; Cristoni G.; Boga C.; Todesco P. E.; Del Vecchio E.; Selva S.; Monari M. (2002). "Reinvestigation of tautomerism of some substituted 2-hydroxypyridines". Arkivoc. Cilt XI. ss. 198-215. 
  2. ^ a b Yang H. W.; Craven B. M. (1998). "Charge Density of 2-Pyridone". Acta Crystallogr. B. 54 (6). ss. 912-920. doi:10.1107/S0108768198006545. PMID 9880899. 
  3. ^ a b Penfold B. R. (1953). "The Electron Distribution in Crystalline Alpha Pyridone". Acta Crystallogr. 6 (7). ss. 591-600. doi:10.1107/S0365110X5300168X. 
  4. ^ a b Ohms U.; Guth H.; Heller E.; Dannöhl H.; Schweig A. (1984). "Comparison of Observed and Calculated Electron-Density 2-Pyridone, C5H5NO, Crystal-Structure Refinements at 295K and 120K, Experimental and Theoretical Deformation Density Studies". Z. Kristallogr. Cilt 169. ss. 185-200. doi:10.1524/zkri.1984.169.14.185. 
  5. ^ a b Almlöf J.; Kvick A.; Olovsson I. (1971). "Hydrogen Bond Studies Crystal Structure of Intermolecular Complex 2-Pyridone-6-Chloro-2-Hdroxypyridine". Acta Crystallogr. B. 27 (6). ss. 1201-1208. doi:10.1107/S0567740871003753. 
  6. ^ Vögeli U.; von Philipsborn W. (1973). "C-13 and H-1 NMR Spectroscopie Studies on Structure of N-Methyle-3-Pyridone and 3-Hydroypyridine". Org Magn Reson. 5 (12). ss. 551-559. doi:10.1002/mrc.1270051202. 
  7. ^ Specker H.; Gawrosch H. (1942). "Ultraviolet absorption of benztriaxole, pryridone and its salts". Chem. Ber., 75. ss. 1338-1348. doi:10.1002/cber.19420751115. 
  8. ^ Leis D. G.; Curran B. C. (1945). "Electric Moments of Some Gamma-Substituted Pyridines". Journal of the American Chemical Society. 67 (1). ss. 79-81. doi:10.1021/ja01217a028. 
  9. ^ Albert A.; Phillips J. N. (1956). "Ionisation Constants of Heterocyclic Substances Hydroxy-Derivates of Nitrogenous Six-Membered Ring-Compounds". J. Chem. Soc. ss. 1294-1304. doi:10.1039/jr9560001294. 
  10. ^ Cox R. H.; Bothner-By A. A (1969). "Proton Magnetic Resonance Spectra of Tautomeric Substituted Pyridines and Their Conjugated Acides". J. Phys. Chem. 73 (8). ss. 2465-2468. doi:10.1021/j100842a001. 
  11. ^ Aksnes DW, Kryvi; Kryvi, Håkon; Samuelson, Olof; Sjöstrand, Elisabeth; Svensson, Sigfrid (1972). "Substituent and Solvent Effects in Proton Magnetic -Resonance (PMR) Spectra of 6 2-Substituted Pyridines". Acta Chem. Scand. 26 (26). ss. 2255-2266. doi:10.3891/acta.chem.scand.26-2255. 
  12. ^ Aue DH, Betowski LD, Davidson WR, Bower MT, Beak P (1979). "Gas-Phase Basicities of Amides and Imidates - Estimation of Protomeric Equilibrium-Constantes by the Basicity methode in the Gas-Phase". Journal of the American Chemical Society. 101 (6). ss. 1361-1368. doi:10.1021/ja00500a001. 
  13. ^ Frank J., Alan R. Katritzky (1976). "Tautomeric pyridines. XV. Pyridone-hydroxypyridine equilibria in solvents of different polarity". J Chem Soc Perkin Trans 2, 12. ss. 1428-1431. doi:10.1039/p29760001428. 
  14. ^ Brown R. S.; Tse A.; Vederas J. C. (1980). "Photoelectro-Determined Core Binding Energies and Predicted Gas-Phase Basicities for the 2-Hydroxypyridine 2-Pyridone System". Journal of the American Chemical Society. 102 (3). ss. 1174-1176. doi:10.1021/ja00523a050. 
  15. ^ Beak P. (1977). "Energies and Alkylation of Tautomeric Heterocyclic-Compounds - Old Problems New Answers". Acc. Chem. Res. 10 (5). ss. 186-192. doi:10.1021/ar50113a006. 
  16. ^ a b Abdulla H. I.; El-Bermani M. F. (2001). "Infrared studies of tautomerism in 2-hydroxypyridine 2-thiopyridine and 2-aminopyridine". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 57 (13). ss. 2659-2671. Bibcode:2001AcSpA..57.2659A. doi:10.1016/S1386-1425(01)00455-3. 
  17. ^ a b Hammes GG, Lillford PJ (1970). "A Kinetic and Equilibrium Study of Hydrogen Bond Dimerization of 2-Pyridone in Hydrogen Bonding Solvent". J. Am. Chem. Soc. 92 (26). ss. 7578-7585. doi:10.1021/ja00729a012. 
  18. ^ a b Gilchrist, T.L. (1997). Heterocyclic Chemistry 0-470-20481-8
  19. ^ Rybakov V. R.; Bush A. A.; Babaev E. B.; Aslanov L. A. (2004). "3-Cyano-4,6-dimethyl-2-pyridone (Guareschi Pyridone)". Acta Crystallogr E. 6 (2). ss. o160-o161. doi:10.1107/S1600536803029295. 
  20. ^ I. Guareschi (1896). "Guareschi-Thorpe condensation". Mem. Reale Accad. Sci. Torino II. Cilt 46, 7, 11, 25. 
  21. ^ Baron, H.; Remfry, F. G. P.; Thorpe, J. F. (1904). "CLXXV.-The formation and reactions of imino-compounds. Part I. Condensation of ethyl cyanoacetate with its sodium derivative". J. Chem. Soc., Trans. Cilt 85. ss. 1726-1761. doi:10.1039/ct9048501726. 
  22. ^ a b Fischer C. B.; Steininger H.; Stephenson D. S.; Zipse H. (2005). "Catalysis of Aminolysis of 4-Nitrophenyl Acetate by 2-Pyridone". Journal for Physical Organic Chemistry. 18 (9). ss. 901-907. doi:10.1002/poc.914. 
  23. ^ a b L.-H. Wang; H. Zipse (1996). "Bifunctional Catalysis of Ester Aminolysis - A Computational and Experimental Study". Liebigs Ann., 10. ss. 1501-1509. doi:10.1002/jlac.199619961003. 
  24. ^ a b Rawson J. M.; Winpenny R. E. P. (1995). "The coordination chemistry of 2-pyridones and its derivatives". Coordination Chemistry Reviews. 139 (139). ss. 313-374. doi:10.1016/0010-8545(94)01117-T. 
  25. ^ a b Shima, S.; Lyon, E. J.; Sordel-Klippert, M.; Kauss, M.; Kahnt, J.; Thauer, R. K.; Steinbach, K.; Xie, X.; Verdier, L. and Griesinger, C., "Structure elucidation: The cofactor of the iron-sulfur cluster free hydrogenase Hmd: structure of the light-inactivation product", Angew. Chem. Int. Ed., 2004, 43, 2547-2551.
  26. ^ a b Sims, Gerald K.; S (1985). "Degradation of Pyridine Derivatives in Soil". Journal of Environmental Quality. 14 (4). ss. 580-584. doi:10.2134/jeq1985.00472425001400040022x. 30 Ağustos 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 26 Kasım 2019. 
  27. ^ "Pyridin-N-oxydと酸無水物との反應". Yakugaku Zasshi (Japonca). 67 (3–4). 1947. ss. 51-52. doi:10.1248/yakushi1947.67.3-4_51. 
  28. ^ Ochiai, Eiji. (1953). "Recent Japanese Work on the Chemistry of Pyridine 1-Oxide and Related Compounds". The Journal of Organic Chemistry. 18 (5). ss. 534-551. doi:10.1021/jo01133a010. 
  29. ^ Boekelheide, V.; Lehn, W. L. (1961). "The Rearrangement of Substituted Pyridine N-Oxides with Acetic Anhydride1.2". The Journal of Organic Chemistry. 26 (2). ss. 428-430. doi:10.1021/jo01061a037. 
  30. ^ Rybakov V. R.; Bush A. A.; Babaev E. B.; Aslanov L. A. (2004). "3-Cyano-4,6-dimethyl-2-pyridone (Guareschi Pyridone)". Acta Crystallogr E. 6 (2). ss. o160-o161. doi:10.1107/S1600536803029295. 
  31. ^ Fischer C. B.; Polborn K.; Steininger H.; Zipse H. (2004). "Synthesis and Solid-State Structures of Alkyl-Substituted 3-Cyano-2-pyridones" (subscription required). Zeitschrift für Naturforschung. 59 (59b). ss. 1121-1131. doi:10.1515/znb-2004-1008. 30 Ekim 2008 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 26 Kasım 2019. 
  32. ^ Ensign, Jerald C.; Rittenberg, Sydney C. (1963). "A crystalline pigment produced from 2-hydroxypyridine by arthrobacter crystallopoietes n.sp". Archiv für Mikrobiologie. 47 (2). ss. 137-153. doi:10.1007/BF00422519. 
  33. ^ a b Sims, G. K.; O'Loughlin, E.J.; Crawford, Ronald (1989). "Degradation of pyridines in the environment" (PDF). CRC Critical Reviews in Environmental Control. 19 (4). ss. 309-340. doi:10.1080/10643388909388372. 27 Mayıs 2010 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 26 Kasım 2019. 
  34. ^ Oloughlin, E; Kehrmeyer, S; Sims, G (1996). "Isolation, characterization, and substrate utilization of a quinoline-degrading bacterium". International Biodeterioration & Biodegradation. 38 (2). ss. 107-118. doi:10.1016/S0964-8305(96)00032-7. 
  35. ^ Sims, Gerald K.; O (1992). "Riboflavin Production during Growth of Micrococcus luteus on Pyridine". Applied and Environmental Microbiology. 58 (10). ss. 3423-3425. PMC 183117 $2. PMID 16348793. 21 Eylül 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 26 Kasım 2019. 

Konuyla ilgili yayınlar

  1. Engdahl, Kjell-Ake; Bivehed, Haakan; Ahlberg, Per; Saunders, Jr., William H. (1983). "Rate-controlling two-proton transfer coupled with heavy-atom motion in the 2-pyridinone-catalyzed mutarotation of tetramethylglucose. Experimental and calculated deuterium isotope effects". Journal of the American Chemical Society. 105 (14). ss. 4767-4774. 
  2. Bensaude O, Chevrier M, Dubois J (1978). "Lactim-Lactam Tautomeric Equilibrium of 2-Hydroxypyridines. 1.Cation Binding, Dimerization and Interconversion Mechanism in Aprotic Solvents. A Spectroscopic and Temperature-Jump Kinetic Study". J. Am. Chem. Soc. 100 (22). ss. 7055-7066. doi:10.1021/ja00490a046. 
  3. Bensaude O, Dreyfus G, Dodin G, Dubois J (1977). "Intramolecular Nondissociative Proton Transfer in Aqueous Solutions of Tautomeric Heterocycles: a Temperature-Jump Kinetic Study". J. Am. Chem. Soc. 99 (13). ss. 4438-4446. doi:10.1021/ja00455a037. 
  4. Bensaude O, Chevrier M, Dubois J (1978). "Influence of Hydration upon Tautomeric Equilibrium". Tetrahedron Lett. 19 (25). ss. 2221-2224. doi:10.1016/S0040-4039(01)86850-7. 
  5. Hammes GG, Park AC (1969). "Kinetic and Thermodynamic Studies of Hydrogen Bonding". J. Am. Chem. Soc. 91 (4). ss. 956-961. doi:10.1021/ja01032a028. 
  6. Hammes GG, Spivey HO (1966). "A Kinetic Study of the Hydrogen-Bond Dimerization of 2-Pyridone". J. Am. Chem. Soc. 88 (8). ss. 1621-1625. doi:10.1021/ja00960a006. PMID 5942979. 
  7. Beak P, Covington JB, Smith SG (1976). "Structural Studies of Tautomeric Systems: the Importance of Association for 2-Hydroxypyridine-2-Pyridone and 2-Mercaptopyridine-2-Thiopyridone". J. Am. Chem. Soc. 98 (25). ss. 8284-8286. doi:10.1021/ja00441a079. 
  8. Beak P, Covington JB, White JM (1980). "Quantitave Model of Solvent Effects on Hydroxypyridine-Pyridone and Mercaptopyridine-Thiopyridone Equilibria: Correlation with Reaction-Field and Hydrogen-Bond Effects". J. Org. Chem. 45 (8). ss. 1347-1353. doi:10.1021/jo01296a001. 
  9. Beak P, Covington JB, Smith SG, White JM, Zeigler JM (1980). "Displacement of Protomeric Equilibria by Self-Association: Hydroxypyridine-Pyridone and Mercaptopyridine-Thiopyridone Isomer Pairs". J. Org. Chem. 45 (8). ss. 1354-1362. doi:10.1021/jo01296a002. 

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Hidrojen bağı</span>

Kimya'da, hidrojen bağı öncelikle daha elektronegatif bir "verici" atom veya gruba (Dn) kovalent bağla bağlanan bir hidrojen (H) atomu ile ve yalnız bir çift elektron taşıyan başka bir elektronegatif atom arasındaki elektrostatik çekim kuvvetidir.

Floroantimonik asit (HSbF6) hidrojen florür ve antimon pentaflorürün farklı oranlardaki karışımıdır. Bu karışımlardan 1:1 kombinasyonu, bilinen en güçlü süperasit formunu oluşturur. Öyle ki, bu form, hidrokarbonları iyonize ederek karbokatyonlar ve H2 oluşturabilmektedir.

<span class="mw-page-title-main">Elias James Corey</span> Amerikalı kimyager

Elias James "E.J." Corey (12 Temmuz 1928) Amerikalı organik kimyacı. 1990 yılında "organik sentez üzerine geliştirdiği teori ve metodolojilerden dolayı Nobel Kimya Ödülü'nü kazanmıştır. Yaşayan en büyük kimyagerlerden biridir. Çok sayıda sentetik reaktifler, metodolojiler geliştirmiş ve organik sentez biliminin gelişmesine katkıda bulunmuştur.

Jean-Pierre Sauvage, Fransız bilim insanı ve kimyager.

<span class="mw-page-title-main">Alüminyum hidrür</span>

Alüminyum hidrür (ayrıca bilinen adıyla alan veya alüman), formülü AlH3 olan inorganik bileşik. Renksiz, piroforik ve katı bir maddedir. Araştırma laboratuvarlarının dışında nadiren karşılaşılmasına rağmen, alan ve türevleri organik sentezlerde indirgen madde olarak kullanılır.

<span class="mw-page-title-main">Azulen</span> kimyasal bileşik

Azulen organik bir bileşiktir ve Naftalinin bir izomeridir. Naftalinin renksiz olmasına karşın, azulen koyu mavi bir renge sahiptir. İki terpenoid, vetivazulen (4,6-dimetil-2-izopropilazulen) ve guaiazulen (1,4-dimetil-7-izopropilazulen), bu özelliklere sahip azulen iskeletli maddeler, doğal olarak mantar pigmentlerinde, Peygamber ağacı yağında ve bazı deniz omugasızlarında bulunabilir.

Siklopentin, halkada beş karbon atomu içeren bir sikloalkindir. Alkinin her atomunda 180°'lik ideal bağ açısı, bağların bir halka oluşturması için gereken yapısal gereksinimden dolayı, oldukça gergin bir yapı oluşturur ve üçlü bağ oldukça reaktifdir. Üçlü bağ, hem [2 + 2] hem de [4 + 2] sikloekleme reaksiyonlarına kolayca maruz kalır. Alken partnerinde stereokimya kaybıyla [2 + 2] ilaveye tabi tutulan benzinden farklı olarak, siklopentin eşin geometrisinin tutulmasıyla alkenlerle tepkimeye girer, yüksek reaktif yapılar için bile orbital simetrinin uygunluğunun bir örneğidir. Yapı aynı zamanda, sikloekleme tepkimesini etkileyen lityum katyonlarıyla bir kompleks de oluşturabilir. Yeni bir metalasikl oluşturmak için bakır türleriyle yeterince güçlü etkileşime girebilir.

<span class="mw-page-title-main">Basketan</span> kimyasal bileşik

Basketan, C10H12 kimyasal formülüne sahip bir polisiklik alkandır. İsmini yapısının sepete benzerliğinden almıştır. Basketan ilk olarak 1966'da bağımsız olarak Masamune ve Dauben ile Whalen tarafından sentezlenmiştir.

<span class="mw-page-title-main">Molibden(V) klorür</span> kimyasal bileşik

Molibden (V) klorür, [MoCl5]2 formülüne sahip olan bir bileşiktir. Bu koyu uçucu katı, diğer molibden bileşiklerini hazırlamak için araştırmada kullanılır. Neme duyarlıdır ve klorlu çözücülerde çözünür. Genelde molibden pentaklorür denir ve aslında Mo2Cl10 formüllü bir dimerdir.

<span class="mw-page-title-main">Fülminik asit</span>

Fülminik asit, HCNO moleküler formülünü içeren kimyasal bir bileşiktir. Gümüş tuzu, 1798'de, gümüş nitrik asit içinde eritildiyse ve şarabın ruhuna eklenen çözeltinin, beyaz, oldukça patlayıcı bir toz elde edildiğini tespit eden Luigi Valentino Brugnatelli tarafından keşfedildi. 1800'de Edward Charles Howard da gümüş tuzu üretti ve daha sonra 1824'te Justus von Liebig tarafından araştırıldı. Howard ayrıca, 1799'da, Brugnatelli'nin işleminde gümüş yerine gümüş cıvası olan cıva tuzunu yarattı. Organik bir asit ve gümüş tuzu 1825'te Friedrich Wöhler tarafından keşfedilen izosiyanik asit izomeridir. Serbest asit ilk olarak 1966'da izole edildi.

Mineral tuzları piridin besiyeri, piridini metabolize edebilen bakteriler için seçici bir ortamdır. Bu besiyeri, diğer bakteri cinsleri arasında Arthrobacter cinsine ait bakterileri izole etmek için kullanılır.

<span class="mw-page-title-main">Piridin</span> Kimyasal bileşen

Piridin, C5H5N kimyasal formüllü, bazik bir heterosiklik organik bileşiktir. Yapısal olarak benzen ile ilişkilidir, bir metin grubu (=CH−) bir nitrojen atomu ile değiştirilir. Kendine özgü, hoş olmayan balık benzeri bir kokuya sahip, oldukça yanıcı, zayıf alkali, suda çözünür bir sıvıdır. Piridin renksizdir, ancak eski veya saf olmayan numuneler sarı renkte görünebilir. Piridin halkası, tarım kimyasalları, farmasötik ürünler ve vitaminler dahil olmak üzere birçok önemli bileşikte ortaya çıkar. Geçmişte piridin, kömür katranından üretilmiştir. Bugün dünya çapında yılda yaklaşık 20.000 ton ölçekte üretilmektedir.

Bunsen brülörü, ısıtma, sterilizasyon ve yanma için kullanılan, tek bir açık gaz alevi üreten yaygın bir laboratuvar ekipmanı parçasıdır. Adını Robert Bunsen'den almıştır.

Organik kimyada sikloalkin, bir alkinin siklik analoğudur. Bir sikloalkin, bir veya daha fazla üçlü bağ içeren, kapalı bir karbon atomu halkasından oluşur. Sikloalkinlerin genel formülü CnH2n-4 tür. C–C≡C–C alkin biriminin doğrusal doğası nedeniyle, sikloalkinler yüksek oranda zorlanabilir. Yalnızca, halkadaki karbon atomlarının sayısı, bu geometriyi karşılamak için gerekli esnekliği sağlayacak kadar fazla olduğunda mevcut olabilir. Bu molekül sınıfının en küçük bileşenleri deneysel olarak gözlemlenemeyecek kadar çok zorlanma yaşayabilirken, büyük alkin içeren karbosikllerde zorlanma gözlenmez. Siklooktin (C8H12), izole edilebilen ve stabil bir bileşik olarak depolanabilen en küçük sikloalkin grubudur. Bununla birlikte, daha küçük sikloalkinler, diğer organik moleküller ile reaksiyonlar yoluyla veya geçiş metallerine kompleksleşme yoluyla üretilebilir ve hapsedilebilir.

<span class="mw-page-title-main">Kloroplatinik asit</span> inorganik bileşik

Kloroplatinik asit (hekzakloroplatinik asit olarak da bilinir), [H3O]2[PtCl6](H2O)x (0≤x≤6) formülüne sahip bir inorganik bileşiktir. Kırmızı bir katı, genellikle sulu bir çözelti olarak önemli bir platin kaynağıdır. Genellikle kısaca H2PtCl6 olarak yazılsa da, hekzakloroplatinat anyonunun (PtCl62-) hidronyum (H3O+) tuzudur. Hekzakloroplatinik asit oldukça higroskopiktir.

<span class="mw-page-title-main">Bromik asit</span>

Hidrojen bromat olarak da bilinen bromik asit, HBrO3 moleküler formülüne sahip bir oksoasittir. Sadece sulu çözelti içinde bulunur. Broma ayrışırken oda sıcaklığında sarıya dönen renksiz bir çözeltidir. Bromik asit ve bromatlar güçlü oksitleyici ajanlardır ve Belousov-Zhabotinsky reaksiyonlarında yaygın bileşenlerdir. Belousov-Zhabotinsky reaksiyonları denge olmayan termodinamiğin klasik bir örneğidir.

Nitrolama bir nitro grubunun organik kimyasal bileşik içine sokulması için genel bir kimyasal proses sınıfıdır. İfade daha genel olarak, ayrıca nitrogliserin sentezinde olduğu gibi alkoller ve nitrik asit arasında farklı nitrat esterleri oluşturma işlemine yanlış olarak uygulanır. Nitro bileşiklerinin ve nitratların ortaya çıkan yapısı arasındaki fark nitro bileşiklerindeki azot atomunun doğrudan oksijen olmayan bir atoma genel olarak da karbon veya başka azot atomuna bağlanmasıdır. Oysaki organik nitratlar olarak da adlandırılan nitrat esterlerinde, azot bir oksijen atomuna genellikle dolayısıyla da bir karbon atomu 'na bağlanır.

Disiyandiamid guanidinden türetilmiş bir nitrildir. Bir siyanamid dimeridir ve siyanamidden hazırlanabilir. Disiyandiamid, su, aseton ve alkolde çözünebilen renksiz bir katıdır. Polar olmayan organik çözücülerde çözünemez.

<span class="mw-page-title-main">Baldwin kuralları</span>

Baldwin'in organik kimyadaki kuralları, alisiklik bileşiklerde halka kapanma reaksiyonlarının göreceli olumlu yönlerini özetleyen bir dizi kılavuzdur. İlk olarak 1976'da Jack Baldwin tarafından önerildi.

Mary Peters Fieser, kocası Louis Fieser ile birlikte yazdığı birçok kitapla tanınan Amerikalı kimyagerdir.