İçeriğe atla

Şelatlama

Metal-EDTA şelatı.

Şelasyon (çelasyon veya kıskaçlama terimleri de kullanılır) iki veya çok dişli bir kimyasal ligandın iyonik bir substrata bağlanması veya komplekslenmesidir. Bu ligandlar ki genelde organik bileşiklerdir, şelatör veya şelat ajanı olarak adlandırılır (diğer kullanılan terimler: şelant, çelatör, çelant, kıskaçlayıcı, iyon tutucu). Şelatörler, ASTM-A-380 standardına göre, "belli metal iyonları ile suda çözünür kompleksler oluşturan kimyasallardır, bu sayede iyonu etkinsizleştirerek onun başka elementler veya iyonlarla tepkitmeyerek, çökelek veya tortu oluşmamasını sağlar". Ligand, substrat ile birleşip bir şelat kompleksi meydana getirir (çelat terimi de kullanılır). Bu terim, metal iyonunu şelatördeki iki veya daha çok atomla bağlandığı kompleksler için kullanılır. Literatürde metal iyonu tutan bağların sayısına değinmek için dişlilik terimi kullanılır, örneğin yandaki resimde görülen EDTA altı dişli (İng. hexadendate) bir şelatördür.

Tarihçe

Şelasyon Yunanca kıskaç anlamına gelen χηλή, chelè ("kile" okunur) sözcüğünden gelir, Türkçeye Fransızca chélation 'dan, o dile de İngilizce chelation 'den girmiştir. Şelat (İng. chelate) terimi ilk defa 1920'de Sir Gilbert T. Morgan ve H. D. K. Drew tarafından kullanılmıştır, "şelat sıfatı, ıstakoz veya benzeri kabukluların büyük kıskacının Yunanca adı chele 'den türetilmiştir; kumpas benzeri kimyasal grupların iki taraftan gelip ortadaki bir atomu bağlayarak heterosiklik halkalar meydana getirme özelliklerinden dolayı bu adı öneriyoruz" demişlerdir.[1]

Şelasyon etkisi

Metilamin (solda) ve etilen diamin (sağda) ile Cu2+ kompleksleri

Sulu çözeltide bakır(II) iyonu, Cu2+ ve etilendiamin (aşağıda "en" kısaltmalı) arasındaki dengeyi ve gene Cu2+ ile metilamin (MeNH2) arasındaki dengeleri karşılaştıralım:

Cu2+ + en kimyasal denge [Cu(en)]2+ (1)
Cu2+ + 2 MeNH2 kimyasal denge [Cu(MeNH2)2]2+ (2)

(1) denkleminde iki dişli ligand etilendiamin bakır iyonu ile bir şelat kompleksi oluşturur. Şelasyon sonucu beş atomlu bir halka oluşur. (2) denkleminde iki dişli kompleks yerine iki tane tek dişli metilamin ligandı vardır, yaklaşık aynı elektron verme kuvvetine sahiptir, yani Cu-N bağlarının oluşma entalpisi iki reaksiyon için yaklaşık eşittir. Aynı bakır konsantrasyonu için, metilamin konsantrasyonu etildiamin konsantrasyonunun iki katı olursa, kompleks (1)'in konsantrasyonu kompleks (2)'nin konsantrasyonundan daha fazla olacaktır. Şelat halkalarının sayısı arttıkça bu etki daha da artacaktır, öyle ki, altı halka meydana getiren EDTA kompleksinin konsantrasyonu (1) veya (2) kompleklserinkinden çok, çok daha fazla olacaktır. Böylece, şelat olgusu deneysel olarak kanıtlanabilir.

Şelat etkisini termodinamik açıklamasında tepkimenin denge sabitini göz önüne alınır: denge sabiti arttığı oranda kompleksin konsantrasyonu da artar.

[Cu(en)] =β11[Cu][en]
[Cu(MeNH2)2]= β12[Cu][MeNH2]2

Sadelik amacıyla yukarıda elektrik yükler gösterilmemiştir. Köşeli parantezler konsantrasyonu gösterir, kararlılık sabiti β'ların altyazıları kompleksin stokiometrisini gösterir. İki tepkimede de bakırın konsantrasyonu aynı, (2) tepkimesindeki metilamin'in analitik konsantrasyonu (1)'deki etilendiaminin konsantrasyonun iki katı olunca [Cu(en)] konsantrasyonu [Cu(MeNH2)2] konsantrasyonundan çok daha yüksektir çünkü β11 >> β12.

Denge sabiti K, standart Gibbs serbest enerjisi, ΔG ile ilişkilidir:

ΔG = −RT ln K = ΔH - TΔS

Burada R gaz sabiti, T ise Kelvin derecesi olarak sıcaklıktır. ΔH reaksiyonun standart entalpi değişimi ΔS ise standart entropi değişimidir. İki reaksiyon için de entalpi teriminin yaklaşık eşit olması gerektiği yukarıda belirtilmişti. Denklem (1)'de solda iki, sağda bir tanecik bulunmaktadır, denklem (2)'de ise solda üç, sağda bir tanecik vardır. Bu demektir ki, şelat kompleksi oluşunca daha az bir entropi kaybı olur. Entropi farkına katkıda bulunan faktörlerden biri budur. Diğer faktörler solvasyon değişimleri ve halka oluşmasıdır. Bazı deneysel veriler aşağıdaki tabloda bu etkiyi göstermektedir.[2]{| class="wikitable" ! Denge !! log β !! ΔG!! ΔH /kJ mol−1!! −TΔS /kJ mol−1 |- | Cd2+ + 4 MeNH2 kimyasal denge Cd(MeNH2)42+ ||6.55|| -37.4 || -57.3||19.9 |- | Cd2+ + 2 en kimyasal denge Cd(en)22+ ||10.62|| -60.67 || -56.48||-4.19 |} Bu veriler iki reaksiyon için standart entalpi değişimlerinin yaklaşık eşit olduğunu gösterir; şelat kompleksinin daha kararlı olmasının nedeni, standart entropi teriminin öbür reaksiyona kıyasla daha az olumsuz olmasıdır, hatta bu durumda açıkça reaksiyonun lehine işlemesidir. Genelde termodinamik değerlerin muhasebesini çözeltideki değişiklere göre yapmak zordur, ama şelat etkisinin başlıca entropi düzeyinde etkili olduğu barizdir.

Başka açıklamalar, Schwarzenbach'ın ki gibi,[3] mevcuttur ve Greenwood & Earnshaw'da verilmiştir.

Doğada

Hemen her biyokimyasal reaksiyon bazı katyonları çözme yeteneği gösterir. Proteinler, polisakkaritler ve nükleik asitler çoğu metal iyonu için mükemmel çokdişli ligandlardır. Tesadüfi şelatörlere ek olarak bazı biyomoleküller özellikle belli metalleri bağlamak için üretilirler (bakınız sonraki bölüm). Histidin, malat ve fitoşelatin bitkilerce kullanılan tipik şelatörlerdir.[4][5][6]

Biyokimya ve mikrobiyolojide

Hemen tüm metaloenzimlerde şelatlanmış metaller bulunur, bunlar genelde peptitler, kofaktörlere ve prostetik gruplar tarafından tutulmuştur.[7] Bu tür şelatlayıcı ajanlar arasında hemoglobin ve klorofil de bulunan porfirin grubu da sayılabilir. Çoğu mikrop türünün ürettiği suda çüzünür pigmentler şelat ajanları olarak görev yapar, bunlar siderofor olarak adlandırılır. Örneğin, Pseudomonas türleri demir tutan pikosiyanin ve piyoverdin salgılarlar. E. coli tarafından üretilen Enterobaktin, bilinen en kuvvetli şelat ajanıdır.

Jeolojide

Yerbilimlerinde, hava şartlarından kaynaklanan aşınma (İng. weathering) organik şelatörlerin etkisine atfedilir, buna örnek olarak mineral ve taşlardan metal iyonlarını çıkartan peptit ve şekerler gösterilebilir.[8] Çevrede ve doğada bulunan çoğu metal kompleksi bir tip şelat halkasına içinde bağlıdır, örneğin bir hümik asit veya protein tarafından şelasyona uğramıştır. Dolayısıyla, metal şelatlar, topraktaki metallerin harekete geçmesi ve metallerin bitkilerde ve mikroorganizmalarda birikmesi olgularında rol oynarlar. Ağır metallerin seçici şelasyonu biyoremediasyonda (biyolojik yöntemlerle toprak veya sunu temizlenmesi) önemli bir konudur, örneğin radyoaktif atıklardan 137Cs'nin çıkartılması gibi.[9]

Uygulamalar

Şelatörler kimyasal analizde, su yumuşatmasında ve şampuan ve gıda koruyucularında kullanılırlar. Sitrik asit, sabun ve çamaşır deterjanlarında suyu yumuşatmak için kullanılır. Yaygın kullanılan sentetik bir şelatör EDTA'dır. Fosfonatlar da iyi bilinen şelasyon ajanlarıdır. Şelatörler su arıtım sistemleride ve özellikle su ısıtma kazanlarının bakım sistemlerinde kullanılır.

Ağır metal detoksifikasyonu

Şelasyon terapisi, cıva, arsenik ve kurşun zehirlenmesinde zehirli metal iyonlarının kimyasal olarak inert biçime gelip, vücutla daha fazla etkileşmeden atılmaları için şelat ajanlarının kullanılmasıdır; ABD Gıda ve İlaç İdaresi (FDA) tarafından 1991'den beri kullanımı onaylanmıştır.

Ağır metal zehirlenmesinde yararlı olsalar da, normal şartlarda şelat ajanları tehlikeli olabilir. ABD Hastalık Kontrol Merkezi (CDC), kalsiyum EDTA yerine disodyum EDTA kullanılmasının kalsiyum eksikliği (hipokalsemi) sonucu ölümlere yol açtığını bildirmiştir.[10]

Diğer tıbbî uygulamalar

Tetrasiklin ailesinden antibiyotikler Ca2+ ve Mg2+ iyonlarının şelatörleridir.

EDTA kanal tedavisinde kanalın lavajında kullanılır. Dentin'i yumuşatmaya yarayan EDTA, kanala boydan boya erişmeyi kolaylaştırır ve işlem sırasında meydana gelen kir tabakasını söker.

Gadolinyum(III) bileşikleri ve şelatları MRI görüntüleme tekniklerinde kontrast ajanı olarak kullanılır.

Çeşitli teknolojilerde kullanılan şelatörler

Kaynakça

  1. ^ Morgan, Gilbert T.; Drew, Harry D. K. (1920). "CLXII.—Researches on residual affinity and co-ordination. Part II. Acetylacetones of selenium and tellurium". J. Chem. Soc., Trans. Cilt 117. s. 1456. doi:10.1039/CT9201701456. 
  2. ^ Greenwood, Norman N.; Earnshaw, A. (1997). "Chemistry of the Elements" (2.2yer= Oxford bas.). Butterworth-Heinemann. s. 910. ISBN 0-7506-3365-4. 
  3. ^ Schwarzenbach, G (1952). "Der Chelateffekt". Helv. Chim. Acta. Cilt 35. ss. 2344-2359. doi:10.1002/hlca.19520350721. 
  4. ^ U Krämer, J D Cotter-Howells, J M Charnock, A H J M Baker, J A C Smith (1996). "Free histidine as a metal chelator in plants that accumulate nickel". Nature. Cilt 379. ss. 635-638. doi:10.1038/379635a0. 
  5. ^ Jurandir Vieira Magalhaes (2006). "Aluminum tolerance genes are conserved between monocots and dicots". Proc Natl Acad Sci USA. 103 (26). s. 9749-9750. doi:10.1073/pnas.0603957103. PMID 16785425. 1 Ağustos 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Ağustos 2009. 
  6. ^ Suk-Bong Ha, Aaron P. Smith, Ross Howden, Wendy M. Dietrich, Sarah Bugg, Matthew J. O'Connell, Peter B. Goldsbrough, and Christopher S. Cobbett (1999). "Phytochelatin synthase genes from arabidopsis and the yeast Schizosaccharomyces pombe". Plant Cell. Cilt 11. ss. 1153-1164. doi:10.1105/tpc.11.6.1153. PMID 10368185. 26 Ekim 2009 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Ağustos 2009. 
  7. ^ S. J. Lippard, J. M. Berg “Principles of Bioinorganic Chemistry” University Science Books: Mill Valley, CA; 1994. ISBN 0-935702-73-3.
  8. ^ Dr. Michael Pidwirny, University of British Columbia Okanagan, http://www.physicalgeography.net/fundamentals/10r.html 21 Ağustos 2009 tarihinde Wayback Machine sitesinde arşivlendi.
  9. ^ Prasad (ed). Metals in the Environment. University of Hyderabad. Dekker, New York, 2001
  10. ^ U.S. Centers for Disease Control, "Deaths Associated with Hypocalcemia from Chelation Therapy" (March 3, 2006), http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5508a3.htm 27 Ağustos 2009 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Bakır</span> Atom numarası 29 olan, 1B geçiş grubundaki metalik element

Bakır, Cu sembollü ve 29 atom sayılı bir kimyasal elementtir. Çok yüksek termal ve elektrik iletkenliği olan yumuşak, dövülebilir ve sünek bir metaldir. Yeni açığa çıkmış saf bakır yüzeyi pembemsi-turuncu renklidir. Bakır, ısı ve elektrik iletkeni olarak yapı malzemelerinde, çeşitli metal alaşımların bileşiminde, som gümüş gibi kuyumculukta, kupronikel denizcilik donanımı ve madenî para yapımında ve konstantan yük ölçerlerde ve sıcaklık ölçen termokupllarda kullanılır.

Hidroliz işlemi suyu oluşturan hidrojen ve oksijen elementlerinin birbirinden ayrılması ile sonuçlanan bir işlemdir. Bazı kaynaklarda hidroliz, moleküllerin su ilavesiyle daha fazla sayıda parçacık oluşturması olarak da geçer. Hidroliz, su ile bir kimyasal bağın parçalanmasıdır yani bir kimyasal reaksiyondur. Hidroliz genel olarak suyun nükleofil olduğu ikame(yer değiştirme reaksiyonu), eliminasyon(organik reaksiyon türü) ve solvasyon (çözme) reaksiyonları için kullanılır.

Panzehir, bir zehirin etkisini önleyen veya yok eden madde. Panzehirler ağız yoluyla zehirlenmelerde emilimi azaltmak amacıyla kullanılanlar ve kan dolaşımına çeşitli yollarla karışmış olan zehire karşı kullanılanlar olmak üzere iki büyük grupta toplanırlar.

<span class="mw-page-title-main">Kral suyu</span> Asitlerin az etki ettiği ya da etki etmediği altın ve platin gibi metallerle tepkimeye girebilen kuvvetli bir asit çözeltisi

Kral suyu, asitlerin az etki ettiği ya da etki etmediği altın ve platin gibi metallerle tepkimeye girebilen kuvvetli bir asit çözeltisidir. Hidroklorik asit ve nitrik asitin 3:1 oranında karıştırılmasıyla oluşur. Ebu Musa Câbir bin Hayyan tarafından bulunduğu tahmin edilmektedir.

<span class="mw-page-title-main">Kimyasal bağ</span> atomları birbirine bağlanmasını ve bir arada kalmasını sağlayan kuvvet

Kimyasal bağ, atomların veya iyonların molekülleri, kristalleri ve diğer yapıları oluşturmak üzere birleşmesidir. Bağ, iyonik bağlar'da olduğu gibi zıt yüklü iyonlar arasındaki elektrostatik kuvvetten veya kovalent bağ'larda olduğu gibi elektronların paylaşılmasından veya bu etkilerin bazı kombinasyonlarından kaynaklanabilir. Açıklanan kimyasal bağların farklı mukavemetleri vardır: kovalent, iyonik ve metalik bağlar gibi "güçlü bağlar" veya "birincil bağlar" ve dipol-dipol etkileşimleri, London dağılım kuvveti ve hidrojen bağı gibi "zayıf bağlar" veya "ikincil bağlar" vardır.

Tiyoüre, altın ve gümüş ile kompleks yapabilen bir reaktiftir. Altın ve gümüşün tiyoüre ile liçi 1941’den beri bilinmesine rağmen günümüzde pek çok araştırmacının ilgisini çekmekte, Au ve Ag için alternatif bir ekstraksiyon prosesi olarak düşünülmektedir. Tiyoüre uygun bir oksitleyici ile metalik altın ve gümüşü çözündürebilir. Tiyoürenin klasik siyanürlemeye göre avantajları;

  1. Alkali çözeltilere karşın asidik çözelti kullanılması,
  2. Anyonik metal-siyanür komplekslerine karşın katyonik kompleksler oluşturması,
  3. Asidik tiyoüre çözeltilerinin, Au ve Ag ekstraksiyonundaki bazı durumlarda toksik ve korozif olmayan bir seçenek olmasıdır.

Elektrokimya, kimya biliminin bir alt dalı olup elektronik bir iletken ile iyonik bir iletken (elektrolit) arayüzeyinde gerçekleşen reaksiyonları inceler. Elektrokimyada amaç kimyasal enerji ve elektrik enerjisi arasındaki değişimi incelemektir.

<span class="mw-page-title-main">Redoks</span> Atomların oksidasyon durumlarının değiştiği kimyasal reaksiyon

Redoks atomların oksidasyon durumlarının değiştiği bir tür kimyasal reaksiyondur. Redoks reaksiyonları, kimyasal türler arasında elektronların fiili veya biçimsel aktarımı ile karakterize edilir, çoğunlukla bir tür oksidasyona, diğer türler indirgemeye uğrar. Elektronun çıkarıldığı kimyasal türlerin indirgenmiş olduğu söyleniyor. Başka bir deyişle:

Nitrik asit, HNO3 kimyasal formülüne sahip oldukça aşındırıcı bir inorganik asittir. Kezzap olarak da bilinir. Saf hâldeki bileşik renksizdir. Ancak uzun süre bekleyen eski asitler azot oksitleri ve suya ayrışması nedeniyle sarı renge dönebilme özelliğindedirler. Piyasada bulunan nitrik asitlerin çoğu % 68'lik bir konsantrasyona sahiptir. Çözelti, %86'dan fazla HNO3 içerdiğinde, dumanlı nitrik asit olarak adlandırılır. Mevcut azot dioksit miktarına bağlı olarak, dumanlı nitrik asit ayrıca %86’nın üzerindeki konsantrasyonlarda kırmızı dumanlı nitrik asit veya %95’in üzerindeki konsantrasyonlarda beyaz dumanlı nitrik asit olarak tanımlanır.

<span class="mw-page-title-main">Bakır(II) sülfat</span>

Küprik sülfat ya da sadece bakır sülfat olarak da bilinen Bakır (II) sülfat, kimyasal formülü CuSO4 olan bir kimyasal bileşiktir. Bu tuzun hidrasyon derecelerine bağlı olarak bir dizi farklı bileşikleri mevcuttur. Susuz formu soluk yeşil ya da grimsi beyaz bir toz olmasına karşın en çok bilinen pentahidrat (CuSO4•5H2O) formu, parlak mavi renktedir. Çok az miktardaki CuSO4•5H2O çevreye çok zehirlidir, gözleri ve cildi tahriş eder ve yutulduğunda zararlı da olabilir. Oktahedral moleküler geometriye ve paramanyetik özelliğe sahip olan bakır (II) sülfat ekzotermik olarak suda çözünürek [Cu(H2O)6]2+ kompleksini oluşturur. Bakır (II) sülfat "mavi vitriyol", "göztaşı" ve "göktaşı" olarak da bilinmektedir.

Siderofor (Yunanca demir taşıyıcı), mikroorganizmalar, pek çok bitki ve bazı yüksek organizmalar tarafından salgılanan, demir şelasyonu yapan bileşiklerdir. Demir Fe3+ iyonlarının nötral pH'de çözünürlükleri çok düşüktür ve dolayısıyla organizmalar tarafından kullanılamaz. Sideroforlar şelasyon yoluyla bu iyonların çözelmesini sağlar. Bu çözelmiş kompleksler aktif taşıma ile hücre içine alınırlar. Çoğu siderofor, nonribozomal peptittir.

EDTA, Etilendiamintetraasetik asit'in kısaltmasıdır. EDTA polyaminokarboksilik asit bileşiğidir. Genel formülü; [CH2N(CH2COOH)2]2 şeklindedir.

Kimyasal reaktiflik, bir reaksiyonun meydana gelme eğilimiyle ilişkilidir. Kimyasal tepkimelerin gerçekleşmesini belirleyen faktörler termodinamik düzeyinde incelenir. Termodinamik olarak bir reaksiyon eğer tepkimenin ürünleri reaktanlara kıyasla daha düşük serbest enerji düzeyinde ise gerçekleşir. Diğer taraftan Reaktiflik ise genel olarak bir maddenin kimyasal değişikliklere ya da kimyasal tepkimelere girme eğilimine denir. Elementlerin atomik yapısı ve elektronlarının dizilişi elementlerin ve oluşturdukları moleküllerin reaktifliğinde önemli rol oynar. Soygazların örneğin kimyasal olarak çok az reaktiflik gösterdiği belirtilir. Dolayısıyla kimyasal bileşik oluşturmaları zordur. Bu durum soygazların tam dolu olan en dış elektron kabuğundan dolayıdır.
Kimyasal denge, asit ve baz kimyası, elektron aktarımı tepkimesi ve entropi gibi konular kimyasal reaktifliğin temel kavramlarıdır.

Bikinkoninik asit tahlili, Smith tahlili olarak da bilinir. Tahlil ismini yaratıcısı Pierce Kimyasal Şirketi' ndeki Paul K. Smith' den alır. Bu biyokimyasal metod, Lowry, Bradford ve Biüret metodlarında olduğu gibi bir solusyondaki total protein konsantrasyonunun belirlenmesinde kullanılır. Total protein konsantrasyonu numune solusyondaki yeşilden mora renk değişimi ile gözükür. Renk değişimi protein konsantrasyonu ile değişir. Kolorimetrik tekniklerin yardımı ile protein konsantrasyonu belirlenir.

<span class="mw-page-title-main">Su yumuşatma</span> Sert sudan pozitif katyonların çıkarılması

Su yumuşatma, su arıtma zamanı kalsiyum, magnezyum ve diğer bazı metal katyonların sert su içerisinde uzaklaştırılmasıdır. Elde edilen yumuşak su, sabun kalsiyum iyonlarını paspaslamakla israf edilmediğinden, aynı temizlik çabası için daha az sabun gerektirir. Yumuşak su ayrıca borularda ve bağlantı parçalarında kireç birikmesini azaltarak veya ortadan kaldırarak sıhhi tesisatın ömrünü uzatır. Su yumuşatma, genellikle kireç yumuşatma veya iyon değiştirme reçineleri kullanılarak gerçekleştirilir, ancak su filtreleri sistemlerinde nanofiltrasyon veya ters osmoz membranları kullanılarak giderek daha fazla yapılır.

<span class="mw-page-title-main">İyodik asit</span>

İyodik asit, HIO3, beyaz veya kirli beyaz bir katı madde olarak elde edilebilir. Suda çok iyi çözünür, ancak klorik asit veya bromik asidin aksine saf halde bulunur. İyodik asit +5 oksidasyon durumunda iyot içerir ve halojenlerin saf halde en stabil okso-asitlerinden biridir. İyot asidi dikkatle ısıtıldığında pentoksit iyice dehidre olur. Daha sonraki ısıtmada, iyot pentoksit ayrıca iyot, oksijen ve düşük iyot oksitleri karışımı vererek ayrışır.

<span class="mw-page-title-main">Bakır(II) nitrat</span>

Bakır (II) nitrat Cu(NO3)2(H2O)x formülüne sahip inorganik bileşikler ailesinin herhangi bir üyesini tanımlar. Hidratlar mavi katılardır. Susuz bakır nitrat mavi-yeşil kristaller oluşturur ve 150-200 °C'de vakumda süblimleşir. Yaygın hidratlar hemipentahidrat ve trihidrattır.

Kimya ve biyokimyada ayrışma, moleküllerin (veya tuzlar veya bileşikler gibi iyonik bileşiklerin) atomlar, iyonlar veya radikaller gibi daha küçük parçacıklara ayrıldığı genel bir süreçtir. Örneğin, bir asit suda çözündüğünde, bir elektronegatif atom ile bir hidrojen atomu arasındaki kovalent bir bağ, bir proton (H+) ve bir negatif iyon veren heterolitik fisyon tarafından kırılır. Ayrışma, birleşme veya rekombinasyonun tersidir.

<span class="mw-page-title-main">Islak kimya</span>

Islak kimya, materyalleri analiz etmek için gözlem gibi klasik yöntemleri kullanan bir analitik kimya biçimidir. Analizlerin çoğu sıvı fazda yapıldığından ıslak kimya olarak adlandırılır. Islak kimya, laboratuvar tezgâhlarında birçok test yapıldığından, tezgâh kimyası olarak da bilinir.

Demir (III) klorür FeCl
3
formüllü inorganik bir bileşiktir. Kristal bir katı olmasının yanı sıra görüş açısına bağlı olarak farklı renklerle gözlemlenebilir; koyu yeşil, mor-kırmızı. Sulu formu da katı formu da fiziksel görünüm olarak koyu kahverengi rengindedir.