İçeriğe atla

İzotop seyreltme

İzotop seyreltmenin temel prensibi
Numuneye izotopik olarak değiştirilmiş bir standardın eklenmesi, analitin doğal izotopik bileşimini değiştirir. Ortaya çıkan izotopik bileşimi ölçerek, numunede bulunan analit miktarını hesaplamak mümkündür.

İzotop seyreltme analizi, kimyasal maddelerin miktarını belirleme yöntemidir. En basit anlayışıyla, izotop seyreltme yöntemi, analiz edilen numuneye izotopik olarak zenginleştirilmiş bilinen madde miktarlarının eklenmesini içerir. İzotopik standardın numune ile karıştırılması, standardın izotopik zenginleşmesini etkin bir şekilde "seyreltir" ve bu, izotop seyreltme yönteminin temelini oluşturur. Standart (izotopik olarak zenginleştirilmiş analit formu) doğrudan numuneye eklendiğinden, izotop seyreltme bir dahili standardizasyon yöntemi olarak sınıflandırılır. Ek olarak, sinyal yoğunluğuna dayanan geleneksel analitik yöntemlerin aksine, izotop seyreltme sinyal oranlarını kullanır. Bu iki avantajdan dolayı, izotop seyreltme yöntemi, en güçlü metrolojik duruşa sahip kimya ölçüm yöntemleri arasında kabul edilmektedir.[1]

İzotoplar, nötron sayısı bakımından farklılık gösteren belirli bir kimyasal elementin varyantlarıdır. Belirli bir elementin tüm izotopları, her atomda aynı sayıda protona sahiptir.

Kaynakça

  1. ^ M.J.T. Milton (2000). "Uncertainty in SI-traceable measurements of amount of substance by isotope dilution mass spectrometry". Metrologia. 37 (3): 199-206. doi:10.1088/0026-1394/37/3/3. 

Konuyla ilgili yayınlar

İlgili Araştırma Makaleleri

Atom ağırlığı ya da bağıl atom kütlesi, belirli bir örnekteki bir elementin atomlarının ortalama kütlesinin atomik kütle sabitine oranı olarak tanımlanan boyutsuz bir fiziksel niceliktir. Atomik kütle sabiti, bir karbon-12 atomunun kütlesinin 1/12'si olarak tanımlanır. Orandaki her iki miktar da kütle olduğundan, ortaya çıkan değer boyutsuzdur; dolayısıyla değerin göreceli (bağıl) olduğu ifade edilir.

<span class="mw-page-title-main">İzotop</span> Aynı elemente ait farklı atomlara verilen isim

İzotoplar, periyodik tabloda aynı atom numarasına ve konuma sahip olan ve farklı nötron sayıları nedeniyle nükleon sayıları bakımından farklılık gösteren iki veya daha fazla atom türüdür. Belirli bir elementin tüm izotopları neredeyse aynı kimyasal özelliklere sahipken, farklı atomik kütlelere ve fiziksel özelliklere sahiptirler. İzotop terimi, "aynı yer" anlamına gelen Yunan kökenli isos ve topos 'den oluşur; isimin anlamı ise, tek bir elementin farklı izotoplarının periyodik tabloda aynı pozisyonda yer alması anlamına gelir. Margaret Todd tarafından 1913 yılında Frederick Soddy'ye öneri olarak sunulmuştur.

<span class="mw-page-title-main">Theodore Richards</span> Amerikalı kimyager (1868 – 1928)

Theodore William Richards Amerikalı kimyacı, 1914 Nobel Kimya Ödülü sahibi. Nobel ödülünü "çok sayıdaki kimyasal elementin atom ağırlıklarının doğru bir şekilde saptanmasından dolayı" kazandı.

<span class="mw-page-title-main">Kararlı izotop oranı</span>

Kararlı izotop oranı kavramı durağan nükloid kavramına yakın bir anlama sahiptir. Durağan izotoplar; buharlaşma ve yoğunlaşma gibi fiziko-kimyasal proseslerle konsantrasyonları değişmesine rağmen zaman içinde değişmeyen izotoplardır. Yani duraylı (kararlı) izotoplar, radyoaktif bozulma göstermeyen izotoplardır. Fakat çoğul durağan izotop kavramı, genellikle belirli bir element üzerindeki nükleoidler üzerinde konuşulurken kullanılır. Bundan dolayı durağan izotoplar dediğimiz zaman üzerinde konuştuğumuz belirli elementin izotoplarından bahsediyor oluruz. Kısacası aynı elementin izotopları kastedilir. Birbiri ile bağıntılı bollukta olan buna benzer durağan izotoplar deneysel olarak “izotop analizi” yönetmi ile bulunabilmektedir. Bulunan bir izotop oranının bir deney aracı olarak kullanılması mümkündür. Teorik olarak, bu tarz durağan izotoplar “radyometrik tarihleme yöntemi” denilen yöntemde kullanılan ve bir radyoaktif bozulmanın ürünleri olan radyojenezik durumları içerebilirler. Ancak, kullanım olarak “durağan izotop oranı” dediğimizde genellikle kastedilen doğada kimin izotop fraksiyonlanmasının bolluğundan birbirine bağıl olarak etkilenip etkilenmediğini söylemektir.

<span class="mw-page-title-main">Kütle spektrometrisi</span> Kütle ölçer

Kütle spektrometrisi, İngilizce: Mass spectrometry (MS), kimyasal türleri iyonize edip oluşan iyonları Kütle-yük oranını esas alarak sıralayan bir analitik teknik. Daha basit terimler ile, bir kütle spektrumu bir numunen içindeki kütleleri ölçer. Kütle spektrometrisi birçok farklı alanda kullanılır ve kompleks karışımlara uygulandığı kadar saf numunelere de uygulanır.

<span class="mw-page-title-main">Atomik emisyon spektroskopisi</span>

Atomik emisyon spektroskopisi, bir numunedeki bir elementin miktarını belirlemek için belirli bir dalga boyunda bir alev, plazma, ark veya kıvılcımdan yayılan ışığın yoğunluğunu kullanan bir kimyasal analiz yöntemidir. Emisyon spektrumundaki atomik spektrum dalga boyu, elementin kimliğini verirken, yayılan ışığın yoğunluğu elementin atom sayısı ile orantılıdır.

<span class="mw-page-title-main">İndüksiyonla birleşmiş plazma atomik emisyon spektroskopisi</span>

İndüksiyonla birleşmiş plazma atomik emisyon spektroskopisi, aynı zamanda İndüksiyonla birleşmiş plazma optik emisyon spektroskopisi olarak da bilinen kimyasal elementlerin tespiti için kullanılan analitik bir tekniktir. Belirli bir elementin karakteristik dalga boylarında elektromanyetik radyasyon yayan uyarılmış atomlarını ve iyonlarını üretmek için indüksiyonla birleşmiş plazmayı kullanan bir tür emisyon spektroskopisidir. Alev sıcaklığı 6000 ila 10.000 K aralığında olan bir alev tekniğidir. Oluşan emisyonun yoğunluğu, numunedeki elementin konsantrasyonunun bir göstergesidir.

<span class="mw-page-title-main">Kütle spektrumu</span>

Kütle spektrumu, kimyasal bir analizi temsil eden m/z'ye (kütle-yük oranı) karşı yoğunluk grafiğidir. Bu nedenle, bir numunenin kütle spektrumu, bir numunedeki iyonların kütleye göre (daha doğrusu: kütle-yük oranına göre) dağılımını temsil eden bir modeldir. Genellikle kütle spektrometresi adı verilen bir alet kullanılarak elde edilen bir histogramdır. Belirli bir maddenin tüm kütle spektrumları aynı değildir. Örneğin, bazı kütle spektrometreleri analit moleküllerini parçalara ayırır; diğerleri sağlam moleküler kütleleri çok az parçalanma ile gözlemler. Bir kütle spektrumu, kütle spektrometresinin türüne ve uygulanan özel deneye bağlı olarak birçok farklı bilgi türünü temsil edebilir; ancak, kütle-yük oranı vs yoğunluk grafiklerinin tümü kütle spektrumu olarak adlandırılır. Organik moleküller için yaygın parçalanma süreçleri, McLafferty yeniden düzenlemesi ve alfa bölünmesidir.Düz zincirli alkanlar ve alkil grupları tipik bir dizi tepe noktası oluşturur: 29 (CH3CH2+), 43 (CH3CH2CH2+), 57 (CH3CH2CH2CH2+), 71 (CH3CH2CH2CH2CH2+) vb.

<span class="mw-page-title-main">Elektron iyonizasyonu</span>

Elektron iyonizasyonu, enerjik elektronların iyonlar üretmek için katı veya gaz fazı atomları veya molekülleri ile etkileşime girdiği bir iyonizasyon yöntemidir. EI, kütle spektrometrisi için geliştirilen ilk iyonizasyon tekniklerinden biriydi. Ancak bu yöntem hala popüler bir iyonizasyon tekniğidir. Bu teknik, iyonları üretmek için yüksek enerjili elektronlar kullandığı için sert bir iyonizasyon yöntemi olarak kabul edilir. Bu, bilinmeyen bileşiklerin yapı tespiti için yardımcı olabilecek kapsamlı parçalanmaya yol açar. EI, moleküler ağırlığı 600'ün altında olan organik bileşikler için en yararlı olanıdır. Aynı zamanda, katı, sıvı ve gaz halindeki birkaç başka termal olarak kararlı ve uçucu bileşik, çeşitli ayırma yöntemleriyle birleştirildiğinde bu tekniğin kullanılmasıyla tespit edilebilir.

<span class="mw-page-title-main">Matriks-destekli lazer desorpsiyon/iyonizasyonu</span>

Kütle spektrometrisinde, matris destekli lazer desorpsiyon/iyonizasyonu (MALDI), minimum parçalanma ile büyük moleküllerden iyonlar oluşturmak için bir lazer enerjisi emici matris kullanan bir iyonizasyon tekniğidir. Daha geleneksel iyonizasyon yöntemleriyle iyonize edildiğinde kırılgan olma ve parçalanma eğiliminde olan biyomoleküllerin ve büyük organik moleküllerin analizinde uygulanmıştır. Gaz fazında büyük moleküllerin iyonlarını elde etmenin nispeten yumuşak bir yolu olması bakımından elektrosprey iyonizasyonuna (ESI) benzer, ancak MALDI tipik olarak çok daha az sayıda çok-yüklü iyon üretir.

<span class="mw-page-title-main">Kimyasal iyonizasyon</span>

Kimyasal iyonizasyon, kütle spektrometresinde kullanılan yumuşak bir iyonizasyon tekniğidir. İlk olarak Burnaby Munson ve Frank H. Field tarafından 1966'da tanıtıldı. Bu teknik, gaz iyon molekülü kimyasının bir dalıdır. Reaktif gaz molekülleri elektron iyonizasyonu ile iyonize edilir ve bunu takiben iyonlaşmayı sağlamak için gaz fazındaki analit molekülleri ile reaksiyona girerler. Negatif kimyasal iyonizasyon, yük değişimli kimyasal iyonizasyon ve atmosferik basınçlı kimyasal iyonizasyon, bu tekniğin yaygın varyasyonlarından bazılarıdır. CI, organik bileşiklerin tanımlanması, yapılarının aydınlatılması ve miktar tayininde birkaç önemli uygulamaya sahiptir. Analitik kimyadaki uygulamaların yanı sıra, kimyasal iyonizasyonun faydaları biyokimyasal, biyolojik ve tıbbi alanlara da uzanmaktadır.

İzotop oranı kütle spektrometrisi, belirli bir örnekteki izotopların göreceli bolluğunu ölçmek için kütle spektrometrik yöntemlerin kullanıldığı bir kütle spektrometrisi uzmanlığıdır.

Sıvı kromatografi-kütle spektrometrisi, sıvı kromatografinin fiziksel ayırma yeteneklerini kütle spektrometrisinin (MS) kütle analizi yetenekleriyle birleştiren analitik bir kimya tekniğidir. Birleştirilmiş kromatografi - MS sistemleri, kimyasal analizde popülerdir çünkü her tekniğin bireysel yetenekleri sinerjik olarak geliştirilmiştir. Sıvı kromatografi, birden çok bileşenli karışımları ayırırken, kütle spektrometresi, yüksek moleküler özgüllük ve algılama hassasiyeti ile ayrı bileşenlerin yapısal kimliğini sağlar. Bu ikili teknik, çevresel ve biyolojik kaynaklı karmaşık örneklerde yaygın olarak bulunan biyokimyasal, organik ve inorganik bileşikleri analiz etmek için kullanılabilir. Bu nedenle, LC-MS, biyoteknoloji, çevre izleme, gıda işleme ve ilaç, tarım kimyası ve kozmetik endüstrileri dahil olmak üzere çok çeşitli sektörlerde uygulanabilir.

<span class="mw-page-title-main">Hızlı atom bombardımanı</span>

Hızlı atom bombardımanı, yüksek enerjili atomlardan oluşan bir ışının iyonlar oluşturmak için bir yüzeye çarptığı kütle spektrometrisinde kullanılan bir iyonizasyon tekniğidir. Michael Barber tarafından 1980 yılında Manchester Üniversitesi'nde geliştirilmiştir. Atomlar yerine yüksek enerjili iyon demeti kullanıldığında (ikincil iyon kütle spektrometrisinde olduğu gibi, yöntem sıvı ikincil iyon kütle spektrometrisi olarak adlandırlır. FAB ve LSIMS' de analiz edilecek malzeme matris adı verilen uçucu olmayan kimyasal koruma ortamı ile karıştırılır ve yüksek enerjili atom ışınıyla vakum altında bombardımana tutulur. Atomlar tipik olarak argon veya ksenon gibi bir inert gazlardandır. Yaygın matrisler arasında gliserol, tiogliserol, 3-nitrobenzil alkol, 18-taç-6 eter, 2-nitrofeniloktil eter, sülfolan, dietanolamin ve trietanolamin bulunur. Bu teknik, ikincil iyon kütle spektrometrisi ve plazma desorpsiyon kütle spektrometrisine benzer.

<span class="mw-page-title-main">Atmosferik basınçta kimyasal iyonizasyon</span>

Atmosferik basınçta kimyasal iyonizasyon (Atmospheric pressure chemical ionization-APCI), atmosferik basınçta (105 Pa) gaz fazı iyon molekülü reaksiyonlarını kullanan kütle spektrometrisinde kullanılan bir iyonizasyon yöntemidir. Yaygın olarak yüksek performanslı sıvı kromatografisi (high performance liquid chromatography-HPLC) ile kombine edilir. APCI, birincil iyonların bir çözücü sprey üzerinde üretildiği kimyasal iyonizasyona benzer bir yumuşak iyonizasyon yöntemidir. APCI'nin ana kullanımı, 1500 Da'dan daha düşük moleküler ağırlığa sahip polar ve nispeten daha az polar termal olarak kararlı bileşikler içindir.

<span class="mw-page-title-main">Ardışık kütle spektrometrisi</span>

MS/MS veya MS2 olarak da bilinen ardışık kütle spektrometresi, kimyasal numuneleri analiz etme yeteneklerini artırmak için iki veya daha fazla kütle analizörünün ek bir reaksiyon adımı kullanılarak birbirine bağlandığı enstrümantal analiz tekniğidir. Ardışık -MS'nin yaygın bir kullanımı, proteinler ve peptitler gibi biyomoleküllerin analizidir.

Membran girişli kütle spektrometrisi ; analitleri, yarı geçirgen bir membran yoluyla kütle spektrometresinin vakum haznesine sokma yöntemidir. Genellikle ince, gaz geçirgen, hidrofobik bir zar, örneğin polidimetilsiloksan, kullanılır. Numuneler, su, hava ve hatta bazen çözücüler dahil hemen hemen her sıvı olabilir. Numune giriş yönteminin en büyük avantajı basitliğidir. MIMS, çok az veya hiç numune hazırlığı olmadan gerçek zamanlı olarak çeşitli analitleri ölçmek için kullanılabilir. MIMS, küçük, polar olmayan moleküllerin ölçümü için en yararlı yöntemdir, çünkü bu tipteki moleküller, numuneye göre membran malzemesi için daha fazla afiniteye sahiptir.

<span class="mw-page-title-main">Seçilmiş iyon akış tüpü kütle spektrometrisi</span>

Seçilmiş iyon akış tüpü kütle spektrometrisi, iz gaz analizi için bir kantitatif kütle spektrometresi tekniğidir ve bir akış tüpü boyunca iyi tanımlanmış bir süre boyunca seçilen pozitif öncü iyonlarla iz uçucu bileşiklerin kimyasal iyonizasyonunu içerir. Havada, solukta veya şişelenmiş sıvı numunelerin baş boşluğunda bulunan eser bileşiklerin mutlak konsantrasyonları, numune hazırlamaya veya standart karışımlarla kalibrasyona gerek kalmadan prekürsör ve ürün iyon sinyal oranlarının oranından gerçek zamanlı olarak hesaplanabilir. Ticari olarak temin edilebilen SIFT-MS cihazlarının algılama sınırı, tek haneli pptv aralığına kadar uzanır.

<span class="mw-page-title-main">Kütle (kütle spektrometrisi)</span>

Bir kütle spektrometresi tarafından kaydedilen kütle, aletin özelliklerine ve kütle spektrumunun görüntülenme şekline bağlı olarak farklı fiziksel büyüklükleri ifade edebilir.

Hızlandırıcı kütle spektrometrisi, kütle analizinden önce iyonları olağanüstü yüksek kinetik enerjilere hızlandıran bir kütle spektrometresi biçimidir. AMS'nin kütle spektrometrik yöntemler arasındaki özel gücü, nadir bir izotopu komşu bir kütleden ayırma gücüdür. Yöntem moleküler izobarları tamamen bastırır ve birçok durumda atomik izobarları da ayırabilir. Bu, 10Be, 36Cl, 26Al ve 14C gibi doğal olarak oluşan, uzun ömürlü radyo izotoplarının tespitini mümkün kılar. AMS, yarılanma ömrü yeterince uzun olan tüm izotoplar için bozunma sayma tekniğinden daha iyi performans gösterebilir.