İçeriğe atla

İyon siklotron rezonansı

İyon siklotron rezonansı, iyonların manyetik bir alandaki hareketiyle ilgili bir olgudur. Bir siklotrondaki iyonları hızlandırmak ve özellikle Fourier dönüşümü iyon siklotron rezonans kütle spektrometreleri ile kütle spektrometresinde iyonize bir analitin kütlelerini ölçmek için kullanılır. Ayrıca yüklü türler içermesi koşuluyla, seyreltik bir gaz karışımındaki kimyasal reaksiyonların kinetiğini izlemek için de kullanılabilir.

İyon siklotron rezonansı ısıtma

İyon siklotron rezonans ısıtma (veya ICRH), bir plazmayı ısıtmak için iyon siklotron frekansına karşılık gelen frekanslara sahip elektromanyetik dalgaların kullanıldığı bir tekniktir. Plazmadaki iyonlar elektromanyetik radyasyonu emer ve bunun sonucunda kinetik enerji artar. Bu teknik, tokamak plazmalarının ısıtılmasında yaygın olarak kullanılmaktadır.[1][2][3][4][5]

Güneş rüzgarı

8 Mart 2013'te NASA (WIND adlı güneş sondası uzay aracı ile), iyon siklotron dalgalarının, güneş yüzeyinden yükselen güneş rüzgârının ısınmasının ana nedeni olarak tanımlandığı bir makale yayınladı. Bu keşiften önce, güneş rüzgarı parçacıklarının güneş yüzeyinden hızla uzaklaşırken soğumak yerine neden ısındığı belirsizdi.[6]

Notlar

  1. ^ "ICRH". www.ipp.mpg.de (İngilizce). 22 Aralık 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Haziran 2020. 
  2. ^ Start (1998). "D-T Fusion with Ion Cyclotron Resonance Heating in the JET Tokamak". Physical Review Letters. 80 (21): 4681-4684. doi:10.1103/PhysRevLett.80.4681. 
  3. ^ Bécoulet (2002). "Edge plasma density convection during ion cyclotron resonance heating on Tore Supra". Physics of Plasmas. 9 (6): 2619-2632. doi:10.1063/1.1472501. ISSN 1070-664X. 21 Haziran 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Ekim 2020. 
  4. ^ Reinke (2012). "Poloidal variation of high- Z impurity density due to hydrogen minority ion cyclotron resonance heating on Alcator C-Mod". Plasma Physics and Controlled Fusion. 54 (4): 045004. doi:10.1088/0741-3335/54/4/045004. ISSN 0741-3335. 
  5. ^ Van Eester (2019). "Ion cyclotron resonance heating scenarios for DEMO". Nuclear Fusion. 59 (10): 106051. doi:10.1088/1741-4326/ab318b. ISSN 0029-5515. 
  6. ^ "Solar Wind Energy Source Discovered - NASA Science". science.nasa.gov. 11 Mart 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Ocak 2014. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Lityum iyon pil</span> şarj edilebilir pil türü

Bir lityum-iyon veya Li-iyon pil, enerji depolamak için lityum iyonlarının tersine çevrilebilir indirgemesini kullanan şarj edilebilir pil türüdür. Geleneksel lityum iyon pilinin anodu genelde karbon'dan yapılan grafit'tir. Katot genellikle metal oksit'tir. Elektrolit genelde bir organik çözücü içindeki lityum tuz'udur.

<span class="mw-page-title-main">Plazma</span> gaz haldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal reaksiyonun kontrollü etkileşim süreci

Plazma, gaz hâldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal tepkimenin kontrollü etkileşim sürecine verilen genel ad. Daha kolay bir tanımla; atomun elektronlardan arınmış hâlidir.

<span class="mw-page-title-main">Güneş rüzgârı</span> Güneşin üst atmosferinden yayılan bir plazma dalgası

Güneş rüzgârı, Güneş'in üst atmosferinden yayılan bir plazma dalgasıdır. Büyük çoğunluğu, enerjileri genellikle 1,5 ve 10 keV arası olan elektronlar, protonlar ve alfa parçacıklarından oluşur. Bu parçacık akımının yoğunluk, sıcaklık ve hız nicelikleri zamana ve Güneş'in boylamına göre değişkenlik gösterir. Bu parçacıklar, Güneş tacının yüksek sıcaklığından gelen yüksek enerjileri ve maruz kaldıkları manyetik, elektriksel ve elektromanyetik fenomen sayesinde Güneş'in kütleçekiminden kurtulabilirler.

<span class="mw-page-title-main">Spektroskopi</span>

Spektroskopi elektromanyetik radyasyon ile maddenin etkileşiminin radyasyonun dalga boyu veya frekansının bir fonksiyonu olarak ortaya çıkan elektromanyetik spektrumu (tayf) ölçen ve yorumlayan bir çalışma alanıdır. Başka bir deyişle, elektromanyetik spektrumun tüm bantlarında görünür ışıktan kaynaklı olarak meydana gelen bir kesin renk çalışmasıdır.

Penning kapanı, homojen bir statik manyetik alan ve mekansal olarak homojen olmayan statik elektrik alanını kullanarak yüklü parçacıkları depolayan cihazlardır. Özellikle atomaltı parçacıkların özelliklerinin hassas ölçümleri için uygundurlar. Elektrik yüklü parçacıklar, sabit bir manyetik alan ve bir elektrostatik kuadrupol alanı kullanılarak bir Penning kapanında hapsedilebilir ve depolanabilir. Yüklü parçacıkları depolayarak, fiziksel özelliklerini yüksek hassasiyetle analiz etmek mümkündür. 1987 yılında Hans Georg Dehmelt, Penning tuzağında elektron ve pozitronun Landé faktörünü çok hassas bir şekilde belirlemeyi başardı. Penning kapanı konusundaki katkıları nedeniyle 1989 yılında Nobel Fizik Ödülü'ne layık görüldü.

Helyum hidrür iyonu ya da hidrohelyum(1+) katyonu, HeH+, bir protonun gaz hâlindeki bir helyum atomu ile reaksiyona girmesi sonunda oluşan pozitif yüklü bir iyondur. İlk olarak 1925'te keşfedildi ve moleküler hidrojen ile izoelektroniktir. 177,8 kJ/mol proton ilgisi ile bilinen en güçlü asittir. Bu iyon aynı zamanda Helyum hidrür moleküler iyonu olarak da anılır. Doğal olarak yıldızlararası maddede bulunduğu öne sürülmüştür. En basit heteronükleer iyondur ve hidrojen moleküler iyon, H+2 ile karşılaştırılabilir. Ancak H+2'den farklı olarak, spectroskopik karakterizasyonunu kolaylaştıran kalıcı moleküler kutuplaşması vardır.

<span class="mw-page-title-main">Koronal döngü</span>

Koronal döngüler alçak koronallerin ve güneşin dönüşüm bölgelerinin temel yapısını oluşturmaktadır. Bu yüksek yapılı döngüler solar ortamdaki manyetik sapmanın direkt sonuçlarıdır. Koronal döngülerin populasyonu solar halkalarla doğrudan bağlantılıdır; bu nedenle koronal döngüler genelde ayak izlerinde güneş izleriyle bulunurlar.

<span class="mw-page-title-main">Uzay aracı itki sistemi</span> Uzay aracını ivmelendirmeye yarayan her türlü yönteme verilen ad

Uzay aracı itki sistemi ya da Uzay aracı sevk sistemi, uzay aracını ve uyduları ivmelendirmekte kullanılan her türlü yönteme verilen addır. Pek çok farklı yöntem bulunmaktadır. Her yöntemin bazı sakıncaları ve üstün tarafı vardır ve uzay aracı sevki etkin bir araştırma alanıdır. Ancak, günümüzdeki pek çok uzay aracı, aracın arkasından/geri tarafından bir gazı roket motoru çıkışı yüksek hızda geçirmek suretiyle itki/sevk üretir. Bu çeşit bir motora roket motoru denmektedir.

<span class="mw-page-title-main">Füzyon roketi</span>

Füzyon roketi, verimlilik ve büyük kütleli yakıtlar taşıma gereksinimi olmaksızın uzayda uzun vadeli ivme sağlayabilecek füzyon enerjisi ile çalışan kuramsal bir roket tasarımıdır. Tasarım füzyon enerjisi teknolojisindeki gelişimin bugünkü sınırların ötesinde ve uzay araçlarının yapımının günümüzdekinden daha büyük ve daha karmaşık olmasına dayanır. Daha küçük ve daha hafif füzyon reaktörleri manyetik hapsetme ve plazma kararsızlığının engellemesi için daha karmaşık yöntemlerin keşfi ile gelecekte mümkün olabilir. Füzyon enerjisi daha hafif ve daha yoğunlaştırılmış alternatifler sağlayabilir.

<span class="mw-page-title-main">Elektrikle çalışan uzay aracı itki sistemi</span>

Elektrikle çalışan uzay aracı itki sistemi, uzay aracının hızını elektrik enerjisi kullanarak değiştirir. Bu Uzay aracı itki sistemi türündeki pek çok sistem, yakıtı elektrik kullanarak yüksek hızlarda araçtan atmak suretiyle çalışır, ancak örneğin elektrodinamik kablolar ise doğrudan gezegenin Manyetik alanıyla etkileşerek çalışırlar.

<span class="mw-page-title-main">İyon motoru</span> Uzay aracı itki sistemi veya uzayda aracın elektrik enerjisi ile gitmesini sağlayan teknoloji

İyon motoru, uzay aracı itki sistemi için kullanılan bir elektrikli itki sistemidir. İyon motoru elektrik iyonlarını hızlandırarak itme oluşturur.

<span class="mw-page-title-main">Kütle spektrometrisi</span> Kütle ölçer

Kütle spektrometrisi, İngilizce: Mass spectrometry (MS), kimyasal türleri iyonize edip oluşan iyonları Kütle-yük oranını esas alarak sıralayan bir analitik teknik. Daha basit terimler ile, bir kütle spektrumu bir numunen içindeki kütleleri ölçer. Kütle spektrometrisi birçok farklı alanda kullanılır ve kompleks karışımlara uygulandığı kadar saf numunelere de uygulanır.

<span class="mw-page-title-main">Yüzey plazmonu</span>

Yüzey plazmonları, yalıtkanlık sabitinin işaret değiştirdiği iki yüzey arasında uyarılabilen delokalize elektron salınımlarıdır; bunlara örnek olarak görünür ışıkta dielektrik ve metaller arası yüzeyler verilebilir. Plazmonlar plazma salınımlarının kuantasıdır; bu elektromanyetik dalgaların kuantizasyonunun fotonlar olmasıyla benzer durumdur. Yüzey plazmonları toplu plazmon salınımlarından daha az güce sahiptir; yüzey plazmonlarının aksine bu tip salınımlar Fermi gazlarında boylamasına gerçekleşir.

<span class="mw-page-title-main">ASDEX Yükseltmesi</span>

ASDEX Yükseltmesi 1991 yılında Garching, Max Planck Plazma Fiziği Enstitüsü'nde hayata geçen bir yönlendirici/saptırıcı tokamaktır. Şu anda, stellaratör Wendelstein 7-X'ten sonra Almanya'nın en büyük ikinci füzyon deneyidir.

<span class="mw-page-title-main">Hızlı atom bombardımanı</span>

Hızlı atom bombardımanı, yüksek enerjili atomlardan oluşan bir ışının iyonlar oluşturmak için bir yüzeye çarptığı kütle spektrometrisinde kullanılan bir iyonizasyon tekniğidir. Michael Barber tarafından 1980 yılında Manchester Üniversitesi'nde geliştirilmiştir. Atomlar yerine yüksek enerjili iyon demeti kullanıldığında (ikincil iyon kütle spektrometrisinde olduğu gibi, yöntem sıvı ikincil iyon kütle spektrometrisi olarak adlandırlır. FAB ve LSIMS' de analiz edilecek malzeme matris adı verilen uçucu olmayan kimyasal koruma ortamı ile karıştırılır ve yüksek enerjili atom ışınıyla vakum altında bombardımana tutulur. Atomlar tipik olarak argon veya ksenon gibi bir inert gazlardandır. Yaygın matrisler arasında gliserol, tiogliserol, 3-nitrobenzil alkol, 18-taç-6 eter, 2-nitrofeniloktil eter, sülfolan, dietanolamin ve trietanolamin bulunur. Bu teknik, ikincil iyon kütle spektrometrisi ve plazma desorpsiyon kütle spektrometrisine benzer.

Fourier dönüşümü iyon siklotron rezonansı kütle spektrometrisi, sabit bir manyetik alandaki iyonların siklotron frekansına dayalı olarak kütle-yük oranını (m/z) belirlemek için kullanılan bir tür kütle analizörüdür (veya kütle spektrometresi).

Gaz fazı iyon kimyası, hem kimya hem de fizik kapsamına giren bir bilim alanıdır. Gaz fazındaki iyonları ve molekülleri inceleyen bilimdir, çoğu zaman bir tür kütle spektrometresi ile çalışılır. Bu bilim için açık ara en önemli uygulamalar, reaksiyonların termodinamiği ve kinetiğini incelemektir.

Seçilmiş iyon izleme , tam spektrum aralığının aksine cihaz tarafından yalnızca sınırlı bir kütle-yük oranı aralığının iletildiği/saptandığı bir kütle spektrometrisi tarama modudur. Bu çalışma modu tipik olarak önemli ölçüde artan hassasiyetle sonuçlanır. Doğası gereği bu teknik, kuadrupol kütle spektrometrelerinde ve Fourier dönüşümü iyon siklotron rezonans kütle spektrometrelerinde en etkili ve bu nedenle en yaygın olanıdır.

<span class="mw-page-title-main">Elektron yakalama ayrışması</span>

Elektron yakalama ayrışması, ardışık kütle spektrometrisinde peptitlerin ve proteinlerin yapısının aydınlatması için gaz fazı iyonlarını parçalama yöntemidir. MS/MS'de kütle seçilmiş öncü iyonun aktivasyonu ve ayrıştırılması için en yaygın kullanılan tekniklerden biridir. Teknik düşük enerjili elektronların, sıkışmış gaz fazı iyonlarına doğrudan eklenmesini içerir.

Potasyum-iyon pil, şarj aktarımı için potasyum iyonları kullanan bir pil türüdür ve lityum-iyon pillere analogdur. 2004 yılında İranlı/Amerikalı kimyager Ali Eftekhari tarafından icat edildi.