İçeriğe atla

İvme

İvme, hızın zamanla değişim hızıdır ve hız grafiğinde herhangi bir noktada, o noktaya teğet doğrunun eğimi olarak tanımlanır.

Fizikte ivme, hızın[1] zamana göre türevi olarak tanımlanır. Büyüklüğü uzaklık/zaman2 olan bir vektörel niceliktir ve cismin hem hızının hem de yönünün şiddetlerindeki değişimini gösterir.[2][3] İvmeölçer yardımıyla ölçülen ivmenin SI birimi metre/saniye²'dir.

Ortalama İvme

Bir cismin ortalama ivmesi belli bir zaman aralığı başına düşen belli bir hız miktarıdır. Matematiksel olarak aşağıdaki gibi ifade edilir:

Anlık İvme

Bir cismin anlık ivmesi cismin anlık zamanda sahip olduğu hız miktarına eşittir. Matematiksel olarak aşağıdaki gibi ifade edilir:

İvme yolun ikinci türevi olarak da tarif edilebilir:

x (t) burada yolun fonksiyonunu temsil eder.

Genel olarak ivme terimi hızdaki (hız vektörünün şiddetindeki) artış olarak kullanılır; hızdaki azalışa ise yavaşlama denir. Fizikte, hız vektöründeki bir değişim ivme olarak kabul edilir: dairesel harekette, hız vektörünün yönündeki değişim merkezcil (merkeze doğru) ivme'ye yol açar. Bir cismin kazandığı ivmelenme, ona uygulanan kuvvetin kütlesine bölümünün bir fonksiyonudur.

İvme kelimesi köken olarak iv kökünden gelir ve ivedi:acele, iven:acele eden, ivmek:acele etmek gibi kelimelerle aynı ailede bulunur.

Klasik mekanikte sabit kütleli bir cismin ivmesi, cisme etki eden net kuvvetle orantılıdır (Newton'un ikinci yasası):

Formülde F cisme etki eden net kuvvet, m cismin kütlesi ve a da cismin ivmesini temsil eder.

Ortalama ivme kavramı hız vektöründeki değişimin v) geçen süreye (Δt) bölümüdür. Anlık ivme de, Δt sıfıra yaklaşırken, çok kısa zaman aralıklarında, belirli bir noktanın ivmesidir.

Kütleçekim ivmesi

İvme kütleçekim sebebiyle de ortaya çıkar. Dünya simetrik bir küre olmadığı için, deniz seviyesinde kütleçekimi her yerde aynı değildir. Mesela Paris kentinde ivme;

Ayrıca bakınız

Kaynakça

  1. ^ Crew, Henry (2008). The Principles of Mechanics. BiblioBazaar, LLC. s. 43. ISBN 0559368712. 
  2. ^ Bondi, Hermann (1980). Relativity and Common Sense. Courier Dover Publications. ss. 3. ISBN 0486240215. 
  3. ^ Lehrman, Robert L. (1998). Physics the Easy Way. Barron's Educational Series. ss. 27. ISBN 0764102362. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

<span class="mw-page-title-main">Kinetik enerji</span> bir cismin harekiyle oluşan enerji

Kinetik enerji, fiziksel bir cismin hareketinden dolayı sahip olduğu enerjidir.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Newton'un hareket yasaları</span> Bilimsel Yasalar

Newton'un hareket yasaları, bir cisim üzerine etki eden kuvvetler ve cismin yaptığı hareket arasındaki ilişkileri ortaya koyan üç yasadır. İlk kez Isaac Newton tarafından 5 Temmuz 1687 tarihinde yayımlanan Philosophiae Naturalis Principia Mathematica adlı çalışmada ortaya konmuştur. Bu yasalar klasik mekaniğin temelini oluşturmuş, bizzat Newton tarafından fiziksel nesnelerin hareketleri ile ilgili birçok olayın açıklanmasında kullanılmıştır. Newton, çalışmasının üçüncü bölümünde, bu hareket yasalarını ve yine kendi bulduğu evrensel kütleçekim yasasını kullanarak Kepler'in gezegensel hareket yasalarının elde edilebileceğini göstermiştir.

1. Yasa
Eylemsiz referans sistemi adı verilen öyle referans sistemleri seçebiliriz ki, bu sistemde bulunan bir parçacık üzerine bir net kuvvet etki etmiyorsa cismin hızında herhangi bir değişiklik olmaz. Bu yasa genellikle şu şekilde basitleştirilir: “Bir cisim üzerine dengelenmemiş bir dış kuvvet etki etmedikçe, cisim hareket durumunu korur.”
2. Yasa
Eylemsiz bir referans sisteminde, bir parçacık üzerindeki net kuvvet onun çizgisel momentumunun zaman ile değişimi ile orantılıdır:
<span class="mw-page-title-main">Düzgün dairesel hareket</span>

Düzgün dairesel hareket, sabit bir kuvvetin etkisinde, bir çember üzerinde süratin değişmediği harekettir.

<span class="mw-page-title-main">Kütleçekim ivmesi</span> kütleçekim potansiyeli kaynaklı bir nesnedeki ivme

Kütleçekimi ivmesi, bir cismin kütleçekimi etkisiyle sahip olduğu ivmedir.

Ağırlık, bir cisme uygulanan kütleçekim kuvvetidir. Ağırlığın birimi newton'dur ve simgesi 'N' olarak gösterilir. Bir kiloluk bir cisim dünyada yaklaşık 9,8 Newtondur. Ölçü aracı dinamometredir. Kütleçekim kuvveti, çekim merkezinden uzaklaştıkça azalacağından Dünya'nın geoit şeklinden dolayı kutuplara gidildikçe artar, ekvatora gidildikçe azalır..

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Katı cisim dinamiği</span>

Katı-cisim dinamiği, dış kaynaklı kuvvetler karşısında hareket eden birbiri ile ilişkili sistemlerin analizini inceler. Her bir gövde için, cisimlerin katı olduğu ve bu nedenle uygulanan kuvvetler nedeni ile deforme olmadıkları, sistemi tanımlayan taşıma ve dönme parametrelerinin sayısını azaltarak analizi basitleştirmektedir.

Fizikte, birim zamanda aktarılan veya dönüştürülen enerjiye ya da yapılan işe güç denir, P simgesiyle gösterilir. Uluslararası Birim Sistemi'nde güç birimi, saniyedeki bir joule'e eşit olan watt'tır kısacası J/s. Eski çalışmalarda güç bazen iş olarak adlandırılırmıştır. Güç türetilmiş bir nicelik ve skaler bir büyüklüktür.

<span class="mw-page-title-main">Dairesel yörünge</span>

Astrodinamikte dışmerkezliği sıfıra eşit olan eliptik yörünge olarak özetlenebilecek dairesel yörünge, tanım olarak fizikte sabit eksen etrafında rotasyonun tipik bir örneğidir. Burada bahsedilen eksen, hareket düzlemine dik olarak kütle merkezlerinden geçen doğrudur.

Astrodinamik'te delta-v kavramı tam anlamıyla "hızdaki değişiklik" demek olmasına rağmen belirli bir anlamı vardır: sayıl olup sürat birimlerini alarak bir yörünge manevrası yapabilmek, başka bir ifadeyle bir rotadan başka bir rotaya geçmek için gerekecek olan "gayreti" hesaplar.

İmpuls veya itme, bir cismin çizgisel momentumundaki değişimdir. J ile gösterilir. Cisme etki eden ortalama kuvvetle, kuvvetin etki etme süresi çarpılarak hesaplanabilir. İmpuls, kuvvet vektörünün integraliyle elde edildiği için bir vektördür. SI birimi newton saniyedir (N·s) Temel büyüklükler cinsinden kilogram metre bölü saniyedir (kg·m/s).

<span class="mw-page-title-main">Hız</span> vektörel bir fiziksel nicelik

Hız, bir nesnenin hareket yönü ile birlikte olan süratini ifade eder. Hız, cisimlerin hareketini tanımlayan bir klasik mekanik dalı olan kinematikte temel bir kavramdır.

<span class="mw-page-title-main">Enerji biçimleri</span>

Enerji biçimleri, iki ana grubu ayrılabilir: kinetik enerji ve potansiyel enerji. Diğer enerji türleri bu iki enerji türünün karışımdan elde edilir.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

Matematiksel fizikte, hareket denklemleri, fiziksel sistemin hareket sürecindeki davranışını, zamanın bir fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemleri, fiziksel sistemin davranışını devinimsel değişkenler üzerinde tanımlanmış bir matematiksel fonksiyon takımı olarak izah eder. Bu değişkenler genellikle uzay koordinatları ve zamandan ibarettir, ama gerektiğinde momentum bileşenleri de kullanılır. En yaygın değişken seçeneği, fiziksel sistemin özelliklerini uygun şekilde tanımlayan değişkenlerden oluşan genelleştirilmiş koordinatlardır. Klasik mekanikte bu fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte eğilmiş uzay üzerindeki fonksiyon daha uygundur. Eğer sistemin dinamikleri biliniyor ise, bu fonksiyonları tanımlayan denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

Verlet entegrasyonu, Newton'un hareket denklemlerini uygulamak için kullanılan nümerik yöntemlerden biridir. Genellikle Moleküler dinamik simülasyonlarında parçacıkların bir sonraki zaman dilimindeki konumlarını belirlemek için kullanılır. Hız hesaplaması yerine sadece o anki konum, önceki konum ve o anki ivmeyi kullanan bu yöntem Euler yönteminden daha isabetlidir ve gerektirdiği işlem sayısı pek farklı değildir. İlk defa 1791 yılında Delambre tarafından kullanılmıştır ve o zamandan beri çok kez yeniden keşfedilmiştir: 1909'da Cowell and Crommelin tarafından Halley kuyruklu yıldızı'nın yörüngesini hesaplamak için veya 1907'de Carl Størmer tarafından manyetik alandaki elektrik yüklü parçacıkların yörüngesini incelemek için kullanılması gibi. Daha sonra 1960'larda Loup Verlet tarafından moleküler dinamikte kullanıldı.