İçeriğe atla

İstiflenme

Aromatik etkileşimler yoluyla bir moleküler cımbız tarafından bağlanmış bir trinitroflüoren molekülünün kristal yapısı.[1]
Aromatik etkileşimler yoluyla bir moleküler cımbız tarafından bağlanmış bir fulleren molekülünün kristal yapısı.[2]

Kimyada istiflenme, genelde aromatik olan moleküllerin atomlar arası etkileşerek deste şeklinde üst üst üste gelmesidir. İstiflenmiş bir sistemin en yaygın bilinen örneği DNA molekülünde birbirini takibeden bazlarda görülür. İstiflenme proteinlerde, non-polar iki halkanın örtüşmesi halinde de meydana gelir. Hangi moleküllerarası kuvvetlerin istiflenmeye neden olduğu hâlen tartışma konusudur.

Etkileyici kuvvetler

İstiflenmeye genelde π-π etkileşimi dense de, π-orbitalinin varlığı nedeniyle olan etkiler bu etkileşimin yalnızca bir kayanğıdır ve çoğu durumda baskın neden olmadığı gösterilmiştir.

Üçten az halkalı halka sistemlerinde, ab initio teorik hesaplamalarla gösterilmiştir ki aromatiklik istifleme kuvvetlerine az katkıda bulunmaktadır. İstiflenmiş biçimi stabilize eden bu kuvvetlerin büyüklüğü, benzer moleküllerin istiflendikleri zaman maruz oldukları van der Waals kuvvetlerinden çok fark etmez. Dolayısıyla DNA nükleobazları aromatik olmalarından dolayı DNA'nın istiflenmiş yapısını stabilize etmezler; bu stabilizasyon tüm kapalı kabuklu nötür moleküllerin hissettiği intermoleküler kuvvetlerden kaynaklanır.

Supramileküler kimyada istiflenme

Supramoleküler kimyada bir aromatik etkileşim veya (π-π etkileşimi) aromatik kısımlar içeren organik bileşikler arasındaki nonkovalent etkileşimlerdir. π-konjüge systemlerde p-orbitallerin moleküller arasında örtüşmesi π-π etkileşimlerine neden olur, dolayısıyla π-elektron sayısı arttıkça etkileşimler de daha güçlü olur. Diğer nonkovalent etkileşimler arasında hidrojen bağları, van der Waals kuvvetleri, yük transfer etkileşimi ve dipol-dipol etkileşimleri sayılabilir.

π-π etkileşimleri, çok sayıda olan delokalize π-elektronları bulunmasından dolayı antrasen, trifenilen ve koronen gibi yassı polisiklik aromatik hidrokarbonlarda etkir. Diğer nonkovalent etkileşimlerden biraz daha güçlü olan bu etkileşim supramoleküler kimyanın çeşitli sahalarında önemli rol oynar. Örneğin, π-π etkileşimleri aromatik bileşiklerin kristal içindeki molekül yapılarında büyük etkisi vardır.

İstiflenmenin iyi bir gösterisi, aşağıda resmi görülen buckycatcher 'de bulunabilir.[2] Bu moleküler cımbız, bir fuleren molekülü ile aynı eğriliğe sahip olan iki içbükey "bucky-kâse" (İng. buckybowl)'den oluşmaktadır. Çözelti içinde, bu ikisi arasında 8600 M−1 değerinde bir birleşme katsayısı ölçülmüştür.

Buckycatcher

Biyolojide istiflenme

DNA'da komşu nükleotitler arasında pi istiflenmesi oluşur ve molekül yapısının stabilitesine katkıda bulunur. Nükleotitlerdeki bazlar pürin veya pirimidin halkalardan oluşur. DNA molekülündeki aromatik halkalar, iplikçiklere neredeyse dikey olarak yerleşmişlerdir. Dolayısıyla aromatik halkalar birbirlerine paraleldirler ve aralarında aromatik etkileşimler olabilir. Çifte bağları meydana getiren atomlardan uzanan pi bağları, komşu bağlardaki pi bağları ile örtüşürler. Kovalen olmayan bir bağ, kovalent bir bağdan daha kuvvetli olmasına rağmen, DNA molekülündeki tüm pi istiflenme etkileşimlerinin toplamı büyük bir stabilizasyon enerjisi yaratır.

Malzemelerde kullanımı

Çoğu sıvı kristal bileşikleri π-π etkileşimleri ile sütunsal yapılar oluştururlar. Ayrıca, π-π etkileşimleri nanoteknolojide kullanılan moleküler montaj tekniklerinde önemli bir unsurdur.

Aromatik istiflenme etkileşimleri

Aromatik istiflenme etkileşimleri (bunlar bazen fenil istiflenmesi olarak da adlandırılır) organik kimyada aromatik bileşikleri ve onların fonksiyonel gruplarını etkileyen bir olgudur. Yassı aromatik halkalar arasındaki kuvvetli van der Waals bağları yüzünden, farklı moleküller arasındaki bu aromatik gruplar, madenî para destesi gibi düzenlenirler. Bu bağlanma pek çok farklı polimerin özelliklerine etki eder: aramidler, polistiren, DNA, RNA, proteinler ve peptitler. Gaz sensorlarında aromatik bileşiklerin teşhisinde bu etkiden yararlanılır.

T istiflenmesi

İlgili bir etki T-istiflenmesi olarak adlandırılır, proteinlerde, bir aromatik sitemdeki pozitif yüklü bir hidrojen atomunun başka bir aromatik sistemin aromatik düzleminin ortasına doğru uzanması durumunda görülür.

Ayrica bakınız

Dış bağlantılar

Kaynakça

  1. ^ A. Petitjean, R. G. Khoury, N. Kyritsakas and J. M. Lehn (2004). "Dynamic Devices. Shape Switching and Substrate Binding in Ion-Controlled Nanomechanical Molecular Tweezers". J. Am. Chem. Soc. 126 (21). ss. 6637-6647. doi:10.1021/ja031915r. 
  2. ^ a b A. Sygula, F. R. Fronczek, R. Sygula, P. W. Rabideau and M. M. Olmstead (2007). "A Double Concave Hydrocarbon Buckycatcher". J. Am. Chem. Soc. 129 (13). ss. 3842-3843. doi:10.1021/ja070616p. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Nükleik asit</span> bilinen tüm yaşam için gerekli olan büyük biyomoleküller sınıfı

Nükleik asitler, bütün canlı hücrelerde ve virüslerde bulunan, nükleotid birimlerden oluşmuş polimerlerdir. En yaygın nükleik asitler deoksiribonükleik asit (DNA) ve ribonükleik asit (RNA)'dır. İnsan kromozomlarını oluşturan DNA milyonlarca nükleotitten oluşur. Nükleik asitlerin başlıca işlevi genetik bilgi aktarımını sağlamaktır.

<span class="mw-page-title-main">Alken</span>

Alkenler yapılarında en az bir tane karbon-karbon (C=C) çift bağı içeren organik bileşiklerdir. Alkenlerin yapısında karbon-karbon çift bağı bulunduğundan ve bu karbonların yapabileceği en fazla hidrojenle bağ yapmamış olduğundan alkenler doymamış bileşikler kategorisine girerler. Alkenlerin yapısında sadece bir karbon-karbon çift bağının bulunması durumunda homolog seriler oluşturur. Bu homolog serilerin genel formülü CnH2n şeklindedir. Burada n-in en az 2 olma şartı vardır. Aşağıda en basit alken olan eten, yaygın ismiyle etilenin, çeşitli modellemelerle çizilmiş şekillerinin yanı sıra alkenlerin çeşitli şekillerdeki yazılış şekilleri de bulunmaktadır.

<span class="mw-page-title-main">Molekül</span> birbirine bağlı gruplar halindeki atomların oluşturduğu kimyasal bileşiklerin en küçük temel yapısı

Molekül, birbirine bağlı gruplar halindeki atomların oluşturduğu kimyasal bileşiklerin en küçük temel yapısına verilen addır. Diğer bir ifadeyle bir molekül bir bileşiği oluşturan atomların eşit oranlarda bulunduğu en küçük birimdir. Moleküller yapılarında birden fazla atom içerirler. Bir molekül aynı iki atomun bağlanması sonucu ya da farklı sayılarda farklı atomların bağlanması sonucunda oluşabilirler. Bir su molekülü 3 atomdan oluşur; iki hidrojen ve bir oksijen. Bir hidrojen peroksit molekülü iki hidrojen ve 2 oksijen atomundan oluşur. Diğer taraftan bir kan proteini olan gamma globulin 1996 sayıda atomdan oluşmakla birlikte sadece 4 çeşit farklı atom içerir; hidrojen, karbon, oksijen ve nitrojen. Molekülleri oluşturan kimyasal bağlara Moleküler bağlar denir. Bunlar kovalent, iyonik ve metalik bağlardır.

<span class="mw-page-title-main">Hidrojen bağı</span>

Kimya'da, hidrojen bağı öncelikle daha elektronegatif bir "verici" atom veya gruba (Dn) kovalent bağla bağlanan bir hidrojen (H) atomu ile ve yalnız bir çift elektron taşıyan başka bir elektronegatif atom arasındaki elektrostatik çekim kuvvetidir.

<span class="mw-page-title-main">Kovalent bağ</span> İki atom arasında elektronun paylaşılması

Kovalent bağ, atomlar arasında elektron çiftleri oluşturmak için elektronların paylaşımını içeren kimyasal bağdır. Bu elektron çiftlerine paylaşılan çiftler veya bağ çiftleri denir. Atomlar arasında elektronları paylaştıklarında çekici ve itici kuvvetlerin kararlı dengesine kovalent bağ denir. Birçok molekül için elektronların paylaşılması her atomun kararlı elektronik gruplaşmasına denk gelen tam değerlik kabuğunun eşdeğerine ulaşmasına olanak tanır.

<span class="mw-page-title-main">Amid</span>

Kimyada amid sözcüğü iki anlama sahiptir: - Birinci anlamıyla amid, bir azot atomuna (N) bağlı bir karbonil grubu bulunduran bir organik fonksiyonel grup veya bu gruba sahip bir bileşiktir. - İkinci anlamıyla amid, bir azot anyonudur.

Moleküler biyolojide bir baz çifti, birbirine ters doğrultuda iki DNA veya RNA zinciri üzerinde bulunan, biribirine hidrojen bağları ile bağlanmış iki nükleobazdır. Standart Watson-Crick baz eşleşmesinde, adenin (A), timin (T) ile, guanin de sitozin ile bir baz çifti oluşturur. RNA içinde olan baz çiftlerinde timin'in yerini urasil (U) alır. Watson-Crick tipi olmayan ve alternatif hidrojen bağlarıyla meydana gelmiş baz çiftleri de oluşabilir, özellikle RNA'da; bunlara Hoogsteen baz çiftlerinde de rastlanır.

<span class="mw-page-title-main">Tamamlayıcılık (moleküler biyoloji)</span>

Moleküler biyoloji ve biyokimyada tamamlayıcılık veya komplementerlik, iki molekülün birbiriyle temas ettikleri yüzeylerindeki şekillerin uyumu sayesinde birbirlerine sıkı bir şekilde bağlanarak bir bütün oluşturma özellikleridir. Tamamlayıcılık, nükleik asitler ve birbirine bağlanan protein-ligand ikilileri için kullanılır. Tamamlayıcılık ayrıca, birbirini tamamlayan nükleik asitlerin dizileri için de kullanılır.

<span class="mw-page-title-main">Denatürasyon</span>

Denatürasyon, protein veya nükleik asitlerin doğal yapısında mevcut olan sekonder, tersiyer ve kuaterner yapılarının bazı fiziksel ve kimyasal dış etkilerle bozularak primer yapılarına dönüşmeleri sürecidir. Canlı bir hücredeki proteinlerin denatüre olması, hücresel aktivitelerde bozulma ve belki de hücrenin ölümüyle sonuçlanır.

<span class="mw-page-title-main">Sap-ilmik</span>

Sap-ilmik molekül içi baz eşleşmesi, tek iplikli DNA'da ve, daha yaygın olarak, RNA'da görülen bir yapıdır. Firkete veya firkete ilmiği olarak da adlandırılır. Bu yapı, aynı molekülün nükleotit dizisi bakımından genelde palindromik olan iki bölgesi arasında baz eşleşmesi sonucu meydana gelen çifte sarmal ve bu sarmalın ucunda eşleşmemiş bir ilmikten oluşur. Palindromik bir dizi her iki yönde de aynı okunan bir dizidir, örneğin bir yönde AAGC olan bir dizi, ters yönde TTCG olarak okunur, bu diziler birbirlerine komplemanter oldukları için DNA dizisi olarak palindromik oldukları söylenir. Meydana gelen lolipop benzeri yapı pek çok RNA ikincil yapısının yapı taşıdır.

<span class="mw-page-title-main">Aromatiklik</span>

Organik kimyada bazı atom halkalarının yapısı beklenenin üstünde kararlıdır. Doymamış bağlar, yalın elektron çiftleri veya boş orbitallerden oluşan konjüge bir halkanın konjüge olmasından beklenecek kararlılıktan daha yüksek bir kararlılık gösterme özelliğine aromatiklik denir. Aromatiklik, halkasal delokalizasyon ve rezonansın bir belirtisi olarak da düşünülebilir.

Biyomoleküler yapı biyomoleküllerin yapısıdır. Bu moleküllerin yapısı genelde birincil, ikincil, üçüncül ve dördüncül yapı olarak ayrılır. Bu yapının iskeleti, molekül içinde birbirine hidrojen bağları ile bağlanmış ikincil yapı elemanları tarafından oluşturulur. Bunun sonucunda protein ve nükleik asit yapı bölgeleri oluşur.

Katılma tepkimeleri, bir organik molekülün yapısına dışarıdan başka bir molekülün katılmasıdır. Organik kimyada yapısında karbon-karbon çift bağı (Alken) ya da karbon-karbon üçlü bağı (Alkin) bulunduran molekülerlerin yapısına dışarıdan en az iki elementin girmesiyle gerçekleşen tepkimelerdir. İşte bu tepkimeler sonucu yapısında çoklu bağ bulunduran moleküldeki çoklu bağlar kırılarak yerlerine tekli bağlar oluşur.

<span class="mw-page-title-main">Van der Waals kuvveti</span>

Moleküler fizik ve kimyada Van der Waals kuvveti veya Van der Waals etkileşimi, atomlar veya moleküller arasındaki mesafeye bağlı bir etkileşimdir. İyonik veya kovalent bağların aksine, bu çekimler kimyasal elektronik bir bağdan kaynaklanmaz; nispeten zayıftırlar ve bu nedenle bozulmaya daha duyarlıdırlar. Van der Waals kuvveti, etkileşen moleküller arasındaki uzak mesafelerde hızla yok olur.

Moleküller arası kuvvet, komşu parçacıklar arasında etkili çekim veya itme kuvvetidir. Molekülleri bir arada tutan iç kuvvetlere kıyasla daha zayıftır. Örneğin HCI moleküllerinin içinde bulunan kovalent bağ, birbirine yeterince yakın komşu moleküller arasında mevcut olan kuvvetlerden daha güçlüdür.

<span class="mw-page-title-main">Yöresizleşmiş elektron</span> bir katı metal, iyon veya molekülde bulunan elektronların tek bir atom veya kovalent bağ ile ilişkili olmaması

Yöresizleşmiş elektronlar veya delokalize elektronlar bir katı metal, iyon veya molekülde bulunan elektronların tek bir atom veya kovalent bağ ile ilişkili olmamasını tanımlar.

<span class="mw-page-title-main">Protein agregasyonu</span>

Protein agregasyonu, yanlış katlanmış proteinlerin hücre içinde veya dışında toplandığı biyolojik bir fenomendir. Bu protein agregatları genellikle hastalıklar ile ilişkilidir. Aslında, protein agregatları, ALS, Alzheimer, Parkinson ve prion hastalıkları dahil olmak çok çeşitli hastalıklarda rol oynamaktadır.

Kimyasal tür, aynı moleküler enerji seviyelerini karakteristik veya belirlenmiş bir zaman ölçeğinde keşfedebilen, kimyasal olarak özdeş moleküler varlıklardan oluşan kimyasal bir madde veya topluluktur. Bu enerji seviyeleri, kimyasal türlerin diğerleriyle etkileşime girme şeklini belirler. Türler atom, molekül, iyon, radikal olabilir ve kimyasal bir adı ve kimyasal formülü vardır. Terim aynı zamanda katı bir dizide kimyasal olarak özdeş atomik veya moleküler yapı birimleri kümesine de uygulanır.

Çözülme, çözücünün moleküller ile etkileşimini tanımlar. Hem iyonize hem de yüksüz moleküller, çözücü ile güçlü bir şekilde etkileşir ve bu etkileşimin gücü ve doğası, çözücünün viskozite ve yoğunluk gibi özelliklerini etkilemenin yanı sıra çözünürlük, reaktivite ve renk dahil olmak üzere çözülen maddenin birçok özelliğini etkiler. Çözülme sürecinde iyonlar eş merkezli bir çözücü kabuğu ile çevrelenir. Çözülme, çözücü ve çözünen moleküllerin çözünme kompleksleri halinde yeniden düzenlenmesi sürecidir.