İçeriğe atla

İnsinerasyon

Tayvan'da bir atık yakma tesisi

İnsinerasyon (atık yakma), atığın içerisindeki organik materyalin, yüksek sıcaklık ve fazla oksijen eşliğinde yakılma işlemidir.

Yakma

Yakma genellikle, jeneratörleri elektrik üretmeye zorlayan buhara dönüştürmek amacıyla suyu kaynatmak için yanan çöpleri gerektirir. Yakma hem küçük hem de büyük ölçekte yapılır. Bu, belirli tehlikeli metalik olmayan organik atıkları ve tıbbi atıkları bertaraf etmenin gerçekçi bir yöntemi olarak kabul edilir. Çünkü yüksek sıcaklık, WtE aktivitesinde en yaygın işlem olmasının yanı sıra bakteri ve virüsleri de parçalar. Bu işlem nispeten steril, gürültüsüz ve kokusuzdur; arazi ihtiyacı ise asgaridir. Yakma teknolojisi katı atıklarda depolanan enerjiyi geri kazanmak için kullanılan en eski teknolojilerden biridir. En yaygın kullanılan yakma teknolojisi için tasarlanmış hareketli ızgaradır. Ön işleme tabi tutulmadan büyük miktarlarda belediye atığı ile başa çıkmak için ızgara yakma fırınları kullanılmaktadır. Genellikle toplu yakma tesisleri olarak adlandırılırlar. Toplu yakma fırınlarında, termal enerji buhar türbinleri yoluyla elektrik üretir. Isı ve elektriğin üretildiği yakma fırınlarında geri kazanılan atık ısı, bölgesel ısıtma, sıcak su temini vb. için kullanılır .(Yılmaz, 2019; Williams 2005; EC 2006; Defra, 2013)

[1][2][3][4]

Tarihçe

Nüfus artışı ve sanayileşmeye bağlı olarak artan katı atık miktarı ve bu atıkların bertarafı büyük kentler için giderek daha önemli bir sorun teşkil etmektedir. Oluşan atıkların mevsimsel değişimler, bölgenin gelir düzeyi, sosyoekonomik faaliyetler gibi faktörlere bağlı olarak değişim gösterdiği bilinmektedir. Bu verilerde atığa uygulanacak bertaraf sistemini etkilemektedir. Günümüzde katı atıkların bertaraf edilmesi için farklı teknolojiler geliştirilmekte ve mevcut teknolojiler iyileştirilmektedir. Gelişmiş ülkelerde 1970‟li yıllardan itibaren yakma ve düzenli depolama yaygın olarak kullanılan sistemlerdir.1990-2000‟li yıllarda ise gazlaştırma ve biyometanizason teknikleri yaygın olarak kullanılmaya başlanmıştır. Özellikle 2005 yılında Avrupa Birliği üyesi ülkelerde geri dönüşümü olmayan atıkların bertarafı için düzenli depolamaya son verilmiş termal bertaraf zorunlu kılınmıştır (Kayalak, 2007; Aynur, 2011)[5][6]

Teorik altyapı

Atığın Yanabilirliği

Atığın yanabilirliği atığın bileşimine bağlıdır. Atığın nem, kül ve organik madde içeriği atığın kalorifik değer konusunda bilgi verir. Dünya genelindeki atık analizleri ve üst ısıl değerlerden hareketle geliştirilen Tanner Diyagramında atığın nem, kül, organik madde içeriği kullanılarak atığın yanabilirliği konusunda bilgi edinilebilir. (Aynur, 2011)[6]

Izgaralı Yakma Tesisleri

Bu tip yakma tesisleri; gelen atığın depolandığı ve ayıklandığı bir biriktirme haznesine, atıkları besleme haznesine vermek amacıyla kullanılacak bir vince, üzerinde yakmanın gerçekleştiği özel taban ızgaralarına sahip bir yakma odasına, içerisinden geçen suyun buhara dönüştürüldüğü ısı değiştirici borulardan oluşan ısı geri kazanım sistemine, kül uzaklaştırma ve baca gazı arıtma sistemlerine sahiptirler. Yakma odalarının iç kısmı, evlerdeki şöminelerin tuğlalarına benzer yapıda, sıcağa dayanıklı tuğlalarla kaplıdır. Bu tesislerde, yakma odasının en üstünde bir kazan varmış gibi buhar üretilir. (Öztürk v.d., 2016)[7]

Döner Fırınlı Yakma Tesisi

Yakma odasının bir diğer modifikasyonu döner fırındır. Bu ünitede atık, ateşleme ızgarasına doğru yerçekimi etkisiyle hareket eder ve yanmanın gerçekleştiği döner fırın içine ulaşır. Döner fırınlar, herhangi bir ızgara sisteminden daha fazla türbülans sağlar ve dolayısıyla yanmanın hızını arttırarak tamamlanmasını kolaylaştırır.

Döner fırınlarda katı atık dışında, arıtma tesisi çamurları ve sıvılar da yakılabilir. Bu tip yakma tesislerinde atık, iç kısmı yanmaya karşı dayanıklı tuğla döşenmiş olan çelikten yapılmış döner bir hazne içerisinde yakılır. Yakma fırınının dönme hızı dakikada birkaç dönüştür (rpm) ve atığın hareketini kolaylaştırmak açısından atığın fırına giriş kısmı, çıkış kısmına göre daha yukarıda kalır. Dönme hareketine bağlı olarak atık, sürekli bir karışım halindedir. Yakma hızı, döner fırının dönme hızının ayarlanmasıyla kontrol edilebilir. Çamurumsu atıklar veya yanma sırasında sıvılaşan atıkların yakılmasında çok uygun bir sistemdir. Sıcaklık, zararlı atık arıtımı için de uygun aralık olan 1000-1300 °C aralığında değişir. Bu tür bir tesisin kapasitesi ≤480 t/gün.ünite (20 t/sa.ünite) olup toplam ısıl verim ≤ %80 düzeyinde gerçekleşir. (Öztürk v.d., 2016)[7]

Akışkan Yataklı Yakma Tesisi

Akışkan yataklı yakma tesisleri, inert granüler partiküllerden bir yatak içeren, ısıya dayanıklı malzemeden yapılmış kapalı sistemlerdir. Gazlar yatağın genleşmesini sağlayacak kadar yüksek bir hızla tabandan reaktöre üflenerek, yatağın ideal bir akışkan gibi davranması sağlanır. Normalde yatak tasarımı yakmanın, yatağın giriş bölgesinde olmasını engelleyecek şekilde yapılır. Bu sayede akışkan yatak üzerinde yükselen gazlardan, inert partikülleri ayıran bir bölge oluşması sağlanır. Akışkan yataklı yakma biriminden çıkan sıcak gazlar, ısı geri kazanım tesisine ya da gaz arıtma ünitesine gönderilir. Yakma gazlarıyla yakılan atığın yakın teması sebebiyle, gerekli stokiyometrik hava ihtiyacı yaklaşık %40’ın üzerinde tutulur. Akışkan yataklı yakıcılarda, düşük kül füzyon sıcaklıkları ve ergime sıcaklığı düşük maddelere bağlı problemler yaşanabilir. Bu tip maddeler (alüminyum, cam gibi), prosese girmeden önce giderilmelidirler. Bu durum, işletme sıcaklığını kül ergime seviyesinin altında tutarak ya da külün ergime sıcaklığını arttıran kimyasallar ekleyerek engellenebilir. Bu teknolojinin bir avantajı, halojenleri (klorür, florür gibi) tutan maddelerin prosese eklenebilmesi ve bu sayede asit gazlarının deşarjının azaltılmasıdır (Mc Dougall v.d., 2001; Öztürk v.d., 2016).[7][8]

Çok Gözlü Yakma Tesisi

Bu tip yakma tesisleri, mekanik olarak susuzlaştırılmış çamur keklerinin yakılması için geliştirilmiş sürekli bir prosestir. Çamur keki, yakma tesisinin en üst gözünden içeri beslenir ve atık bu gözden daha aşağı gözlere doğru ilerler. Yakma ünitesindeki, gözler arası geçiş delikleri merkezde ve çevrede bulunmaktadır. Sıyırıcıların döner kısımları, yakma havası olarak geri devrettirilen hava ile soğutulur. Yakma havası ve ek yakıt aşağıdan yukarıya doğru ters akımla beslenir. Cüruf ise, yakma ünitesinin alt kısmından dışarı atılır. (Öztürk v.d., 2016)[7]

Modüler (Paket) Yakma Sistemleri

Modüler yakma tesisleri atığın yakılmasının zorunlu olduğu, ancak miktarının ise tipik bir su duvarı veya ısıya dayanıklı malzeme ile kaplanmış büyük yakma tesislerinin inşasına imkan vermeyecek kadar küçük olduğu durumlarda kullanılırlar. Bu tür yakma tesisleri genellikle, hastanelerden kaynaklanan tehlikeli atıkların yakılmasında kullanılırlar. İnşa maliyetinin düşüklüğü ve devreye almanın hızlı olması nedeniyle kapasite artırımına en uygun sistemdir. (Öztürk v.d., 2016)[7]

Teknolojinin Uygulama Alanları

Temel amacı depolama sahalarına giden atık miktarının azaltılması olan Termal Yöntemlerden olan Yakma teknolojisi ile katı atıklar hacimce %80-90 ve ağırlık bakımından %75-80 oranında azaltılabilmekte ve atık sorununa kalıcı çözümler üretmek ve enerji elde edilerek ekonomik değer sağlanmaktadır. Proses gereksinimlerine uymak için "ham atık" aynı zamanda daha az kirlenme ve daha iyi homojenliğe sahip Katı Geri Kazanılmış Yakıt (SRF) veya çöp türevli yakıtlara (RDF) dönüştürülür. RDF'nin hazırlanması, geri dönüştürülebilir maddeleri atık akışından çıkarmak için temel bir işlem seviyesini gerektirirken, SRF daha yüksek bir hazırlık standardı gerektirir. RDF tipik olarak hazırlanmamış karışık atık akışlarını da kabul eden standart enerji tesisleri için kullanılırken, SRF genellikle fosil yakıtlara alternatif olarak çimento fırınlarında ve elektrik santrallerinde kullanılır. (Yılmaz, 2019)[1]

Evsel Atık Yakma

• Hareketli ızgara fırınların, karışık evsel atıkların bertarafında kullanılmasının uzun bir geçmişi vardır ve sistemin başarısı kanıtlanmıştır. (NIRAS, 2017)[9]

• Su soğutmalı ızgara fırınlar, daha iyi yanma kontrolüne sahiptir ve yüksek ısı kapasitesine sahip evsel atıkları bertaraf edebilmektedir. (NIRAS, 2017)[9]

• Izgaralı döner fırınlara, heterojen evsel atıkları beslenebilir ancak kapasitesi hareketli ızgara fırınlara göre daha düşüktür. (NIRAS, 2017)[9]

• Taşıma sistemli sabit ızgara fırınlarda daha az hareketli parça vardır, fakat atıkların daha fazla ön işleme tabi tutulması gerekebilir (örn. öğütme, ayırma). (NIRAS, 2017)[9]

• İkinci yanma odalı modüler tasarımlar daha küçük uygulamalar için yaygın olarak kullanılmaktadır. Boyuta bağlı olarak, bu ünitelerin bazılarının kesikli olarak çalıştırılması gerekmektedir. (NIRAS, 2017)[9]

• Akışkan yataklı fırınlar ince parçalara bölünmüş ve aynı özellikte sürekli gelen ATY için yaygın olarak kullanılmaktadır. (NIRAS, 2017)[9]

Tehlikeli Atık Yakma

• Döner fırınlar, katıların yanında sıvı ve macunsu atıkları da kabul edebildiği için, tehlikeli atıkların bertarafında yaygın olarak kullanılmaktadır. (NIRAS, 2017)[9]

• Sıvı enjeksiyonlu fırınlar, tehlikeli atıkların yakılması için yaygın olarak kullanılmaktadır. (NIRAS, 2017)[9]

• Su soğutmalı fırınlar daha yüksek sıcaklıklarda çalıştırılabilir ve için daha yüksek enerji değerlerine sahip atıkları kabul edebilirler. (NIRAS, 2017)[9]

• Atıkların varil ve diğer ambalajların öğütücüden geçirilirse daha tutarlı bir atık içeriği ve akabinde yanma süreci oluşturulmuş olur. (NIRAS, 2017)[9]

• Besleme dengeleme sistemi (örn. ezme özelliğine sahip ve fırına sabit miktarda katı atık besleyen helezon konveyör) atığın fırına sürekli ve kontrollü bir şekilde beslenmesine ve akabinde uniform yanma koşullarının muhafaza edilmesine katkı sağlayacaktır. (NIRAS, 2017)[9]

Arıtma Çamuru Yakma

• Akışkan yataklı fırınlar arıtma çamurunun termal yöntemlerle bertaraf edilmesinde yaygın olarak kullanılmaktadır. (NIRAS, 2017)[9]

• Sirkülasyonlu akışkan yataklı fırınlar, kabarcıklı akışkan yataklı fırınlara göre daha fazla yakıt esnekliği sağlar. Ancak yatak malzemesinin tutulması için siklona ihtiyaç duyarlar. (NIRAS, 2017)[9]

• Kabarcıklı akışkan yataklı fırınlarda tıkanmanın önlenmesi için gerekli özen gösterilmelidir. (NIRAS, 2017)[9]

• Prosesten kazanılan ısı, çamurun kurutulması için kullanılarak ek yakıt ihtiyacı azaltılabilir. (NIRAS, 2017)[9]

• Arıtma çamurunun, evsel atık yakma fırınlarında katı atıklarla beraber işlem görmesi için besleme teknolojileri önem arz etmektedir. Bazı teknikler: Kurutulmuş çamurun toz olarak basılması; çamurun ızgara üstüne püskürtülmesi; çamurun evsel atıklarla karıştırılıp birlikte beslenmesi. (NIRAS, 2017)[9]

Tıbbi Atık Yakma

• Manuel olmayan yükleme sistemleri kullanılmalıdır. (NIRAS, 2017)[9]

• Tıbbi atıklar sızdırmaz ve darbelere dayanıklı kapalı konteynerlerde kabul edilmeli ve saklanmalıdır. (NIRAS, 2017)[9]

• Izgaralı sistemler kullanıldığında, birincil hava kaynağı, ızgaranın soğutulması işlevinden ziyade yanma işlemini kontrol edilebilmek için yeterli kapasitede tasarlanmalıdır. Hava soğutmalı ızgaralar net kalorifik değeri 18 MJ/kg’a kadar olan atıklar için uygundur. Daha yüksek kalorifik değere sahip atıklar için su soğutmalı sistemler tercih edilmelidir. Aksi halde ızgaranın soğutulması için, yanma reaksiyonunun kontrol edilmesi için gereken optimum hava miktarının çok üzerinde birincil hava basılması gerekecektir. (NIRAS, 2017)[9]

• Atıkların taşınırken karıştırılması amacıyla döner fırınlar tercih edilebilir. Atığın net kalorifik değeri 15-17 GJ/ton’dan yüksekse veya belirli tür atıkların bertaraf edilmesi için fırın 1100 0 C’nin üzerindeki sıcaklıklarda çalıştırılıyorsa, su soğutmalı döner fırınların kullanılması uygundur. (NIRAS, 2017)[9]

• Tıbbi atıklar, bazı uyarlamaların akabinde evsel atık bertaraf edilen ızgara fırınlarda yakılabilir. Enfeksiyöz tıbbi atıklar, sterilize edildikten sonra kapalı konteyner içinde otomatik besleme sistemi kullanılarak evsel atık yakma tesisinde bertaraf edilebilir. Cıva içeren tıbbi atıkların, diğer atıklarla karışması engellenmelidir. (NIRAS, 2017)[9]

Teknolojinin Geleceği ve Sürdürülebilirliği

Atıktan enerji üretim tesisleri, aynı cep telefonlarında da olduğu gibi, sürekli olarak iyileştirme çalışmalarının ve yeniliklerin gerçekleştiği uzun bir geçmişe sahiptir. Dolayısıyla bu teknoloji, geleceğin ihtiyaç ve koşullarına da karşılık verebilecek düzeydedir. (Eswet,2013)[10]

Evsel atık yakma sistemlerinin sürdürülebilir bir şekilde hayata geçirilebilmesi için; İyi planlanmış ve oturmuş bir entegre atık yönetim sisteminin varlığı gereklidir. (Aynur, 2011)[6]

Atıkların iyi işletilen düzenli depolama tesislerinde depolanmakta olması ve depolama sahasının yanma sonucu oluşan atıkların depolanmasına imkan sağlaması gerekmektedir. Yanabilir özellikte asgari 50.000 t/yıl miktarında kentsel atığın sürekli temin garantisi olmalı ve gelen atığın miktarındaki değişimin haftalık %20‟yi aşmaması gerekmektedir (The World Bank,1999;Aynur, 2011). Yakılacak atığın ortalama ısıl değerinin asgari 1.600 kcal/kg civarında olması ve hiçbir şekilde 1.400 kcal/kg altına düşmemesi gereklidir.Halkın, yakma dolayısı ile artacak atık bertaraf tariflerini ödeme kapasite ve isteğinin varlığı olmalıdır.Yakma tesisleri orta veya ağır sanayi bölgelerine kurulmalı ve kalifiye personel tarafından işletilmelidir. Evsel atık yakma tesislerinde atık gaz; gaz temizleme sistemine geçmeden önce 200 C kada soğutulabilmesi ve gaz temizleme sisteminin en az 2 basamaklı ESP içermesi gereklidir. Atık gazın çıktığı bacanın bölgedeki en yüksek bina ile arasında 1 km ya da 70 m bulunması gereklidir (The World Bank,1999; Aynur, 2011).[6][11]

Teknolojinin Çevresel Etkileri

Atık yakma işletmelerinin muhtemel etkileri şu ana başlıklar altında toplanır:

·       Havaya ve suya salınan genel proses emisyonları (koku da dahil olmak üzere) (İdari özet, 2005)[12]

·        Genel proses tortu üretimi (İdari özet, 2005)[12]

·        Proses ses ve titreşimi (İdari özet, 2005)[12]

·        Enerji tüketim ve üretimi (İdari özet, 2005)[12]

·        Hammadde (reaktif) tüketimi (İdari özet, 2005)[12]

·        Genellikle atıkların depolanmasından kaynaklı olan kaçak emisyonlar (İdari özet, 2005)[12]

·        Zararlı atıkların depolama/taşıma/işleme risklerinin azaltılması (İdari özet, 2005)[12]

·        Gelen atığın ve giden kalıntıların taşınması (İdari özet, 2005)[12]

·        Atığın kapsamlı şekilde ön işlemden geçmesi (örneğin atık kaynaklı yakıtların hazırlanması) (İdari özet, 2005)[12]

Modern emisyon standartlarının uygulanması ve yürürlüğe konması ile çağdaş kirlilik kontrol teknolojilerinin kullanımı havaya salınan emisyon seviyesini o kadar düşürmüştür ki bu seviyede artık atık yakımı kaynaklı kirlilik riskleri oldukça düşük olarak düşünülmektedir. Bu tür teknolojilerin havaya salınan emisyonları kontrol etmek amacıyla sürekli olarak ve etkin bir şekilde kullanımı çevreye ilişkin temel bir konuyu temsil etmektedir. (İdari özet, 2005)[12]

Birçok atık yakma işletmesinin, aksi takdirde kirletici özelliğe sahip olması muhtemel olan yönetilmemiş atıkların etkin bir şekilde arıtılmasını sağlamak konusundaki rolünün dışında, atıktan enerji üretme şeklindeki geri kazanım sürecinde özel bir rolü vardır. Atık yakma işletmeleri (genellikle de belediye atıkları olmak üzere), atığın enerji değerini geri kazanma becerisini artırmak için belirli ilkeleri uyguladığında, çevreye yönelik bu olumlu katkıdan faydalanma düzeyini arttırır. Endüstriye yönelik önemli bir çevresel fırsat da, bu sebeple, enerji tedarikçisi olarak kendi potansiyelini artırmaktır. (İdari özet, 2005)[12]

Atık Yakma Teknolojisinde  Maliyet

Atık yakma teknolojilerinde, işletme ve ilk yatırım maliyetleri oldukça yüksektir.

Avantajlar

  • Diğer atık bertarafı yöntemlerine göre en az alan ihtiyacı (Sezer, 2012)[13]
  • Giren atığın ağırlık olarak %25’e, hacim olarak %10’a azaltılması (Sezer, 2012)[13]
  • Atık nakliye bedellerinin azaltılması (şehrin içine kurulması halinde) (Sezer, 2012)[13]
  • Küllerin inşaat sektöründe hammadde olarak kullanılması (Sezer, 2012)[13]
  • Enerji üretimi (elektrik ve sıcak su) (Sezer, 2012)[13]
  • Sera etkisi oluşturan fosil kaynaklı yakıtlarının kullanımın azaltılması (Sezer, 2012)[13]

Dezavantajlar

  •  Yüksek ilk yatırım maliyeti (Sezer, 2012)[13]
  • Yüksek işletme maliyetleri (Sezer, 2012)[13]
  • Halkın tepkisi   (Sezer, 2012)[13]

Teknolojinin Dünyadaki Mevcudiyeti

Atık yakma teknolojisinin yüzlerce yıl öncesine dayanan geçmişi bulunmakta olup, şu an Avrupa’da en sık kullanılan gelişmiş atık bertaraf yöntemidir. Dünya genelinde 2000 adet yakma tesisi bulunmaktadır. AB (EU 28) ülkelerinde 400 adet tesis bulunmaktadır ve bu tesisler yılda 72 milyon ton belediye atığı işleme kapasitesine sahiptir. 2002 – 2012 yılları arasında düzenli depolama %18 azalmış, geri dönüşüm %11 ve yakma ise %7 oranında artmıştır. (Waste Management, Waste to Energy, Volume 4, K.Thome-Kozmiensky, S. Thiel, 2014 (syf 49- 50); İstaç,2015)[14][15]

AB’de her yıl 80 milyon tondan fazla evsel atık düzenli depolanmakta ve bu da küresel ısınmaya olumsuz yönde önemli ölçüde etki etmektedir. Minimum düzenli depolamaya örnek olarak gösterilebilecek ülkeler arasında olan Almanya, Belçika, İsveç, Hollanda, Avusturya ve Danimarka %3 veya daha az seviyede düzenli depolamayı tercih etmektedir28 . (Waste Management, Waste to Energy, Volume 4, K.Thome-Kozmiensky, S. Thiel, 2014 (syf 49- 50); İstaç,2015)[14][15]

Uygulama Örnekleri

Almanya

Avrupada kentsel katı atıkların yakma ile bertarafının yaygın şekilde sağlandığı ülkelerden biri Almanya‟dır. Almanya‟da toplam 59 adet yakma tesisi bulunmaktadır ve toplam atık yakma tesislerinin kapasitesi 257 kton/yıldır (European Commission, 2006.a;Aynur, 2011).[16] Almanya‟da yayınlanan yönetmeliğe göre, 2005 yılından itibaren, tüm belediyeler ve belediye birlikleri, geri kazanılamayan atıkları yakmak zorunda olacaktır. Almanya‟da Neustadt'taki katı atık yakma tesisinin kapasitesi 56 000 t/yıl‟dır. Baca gazı arıtma birimi, hiç atıksu üretmeden çalışmaktadır. İlk önce yakma sonucu oluşan ham baca gazı, 220 °C'ye soğutulur, sonra yıkayıda oluşan gazdaki partikül ve su karışımı çamurla birlikte bir doğru akışlı kurulama biriminden geçer. Baca gazındaki çamur, bir santrifüjlü püskürtücü ile kabarcıklara ayrılıp kolaylıkla kurutulur. Kurutma enerjisinin baca gazından alınmasıyla gazın baca gazı çıkış sıcaklığı 160 °C düşer. Baca gazı, daha sonra yüksek verimli siklon ayırıcısına geçer. Siklonlarda, 15 µm'den daha büyük olan partiküller ayıklanır ve daha sonra baca gazı bir yıkayıcıdan geçer. Bu yıkayıcıda sıcaklık 75 °C'ye düşürülür. İkinci bir yıkayıcıda HCl ve HF absorpsiyonu gerçekleştirilmek üzere gaz dolgu kolondan geçer. (Aynur, 2011)[6]

SO2 ve aerosol ayırımı için gaz akımı jet yıkayıcısında gerçekleştirilir. Jet yıkayıcısından sonra, baca gazları yine dolgulu bir yıkayıcıdan geçer. Sistemin sonunda baca gazı 60 °C sıcaklıkla 55 m yüksek olan bir baca vasıtasıyla alıcı ortama verilir (R&R Bilimsel ve Teknik Hizmetler Ltd. Şti & DHV Consultants,2010; Aynur,2011)[6][17]

Fransa

Fransada 210 adet evsel atık yakma tesisi bulunmaktadır. Bu tesislerin toplam kapasitesi 11748MT/yıl‟dır. Fransa‟da yapılan tesislerden en önemlisi Paris şehrindeki St. Quen bölgesinde bulunan 'çöp santrali'dir. Tesisin kuruluşundaki amaç Pariste üretilen kentsel atığın %30 unu bu tesiste yakılmasını sağlamaktı. Tesis 3 adet her birinin kapasitesi 28t/s olan hareketli ızgaralardan oluşmaktadır. 1990 yılında kurulan tesis 1992 yılında toplam 635153 ton atık bertarafını gerçekleştirmiş ve 1,538,600 ton buhar 19800 MWh elektrik üretmiştir. St. Quen Santrali, son derece modern mimarisi ile göze çarpan iyi bir örnektir ve bitirildiğinde 155 milyon dolara mal olmuştur. (Aynur, 2011)[6]

Çevre Mühendisliği ve Teknoloji İlişkisi

Atıkların, termal bertaraf yöntemleri kullanılarak bertarafı büyük maliyetler gerektirmektedir. Bu da atıkların bertarafı sonrasında ekonomik değeri olan son ürün ve enerji elde etmeye yönelik çalışmaların yapılmasına neden olmuştur. Atıklar bileşenlerine bağlı olarak enerji potansiyeli oldukça yüksek maddelerdir. Dünyada enerji tüketiminin hızla artması buna karşın kaynaklarının hızla tükenmesi; atıkların enerji potansiyellerinin değerlendirilmesi açısından oldukça önemlidir. Dünya genelinde atıktan pek çok sistemle enerji üretimi söz konusudur. Ancak enerji üretiminin %90‟ı yakma ile sağlanmaktadır (Tezcakar, Can, 2010;(Aynur, 2011)[6][18]

Yakma teknolojileri, Çevre Mühendisliği uygulamalarıyla sağlanmaktadır. Çevre mühendisleri, yakma teknolojilerinden kaynaklı sorunları minimuma indirmek ve  enerji kazancının en yüksek seviyede olmasını sağlamak için çalışmalar yapar.

Şablon:Atık yakma

Kaynakça

  1. ^ a b Yılmaz,2019.Balıkesir İli Evsel Katı Atıklarının Bertarafında Uygun Termal Yöntemin Seçilmesi, Yüksek Lisans Tezi, Hasan Kalyoncu Üniversitesi,Fen Bilimleri Enstitüsü
  2. ^ Williams, P. (2005). Waste Treatment and Disposal. 2nd edition. John Wiley & Sons Inc. Chichester, UK,
  3. ^ EC 2006
  4. ^ DEFRA, (2013). Department for Environment, Food & Rural Affairs. Incineration of Municipal Solid Waste. Technical Report. London. UK.
  5. ^ Kayalak, T.Ç., 2007. Kırıkkale İlinin Evsel Katı Atıklarının Bertarafının Çevresel ve Ekonomik Boyutuyla İncelenmesi,Yüksek Lisans Tezi,Gazi Üniversitesi,Fen Bilimleri Enstitüsü.
  6. ^ a b c d e f g h Aynur, 2011.İstanbul’da Oluşan Kentsel Katı Atıklar İçin Yakma ve Gazlaştırma Sistemlerinin Karşılaştırmalı Analizi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  7. ^ a b c d e Öztürk, İ., Arıkan, O., Altınbaş, M., Alp, K., Güven, H., (2016), Katı Atık Geri Dönüşüm ve Arıtma Teknolojileri El Kitabı, (2. Baskı),Türkiye Belediyeler Birliği, Ankara
  8. ^ Mc Dougall, F.R., White, P.R., Franke, M., Hindle, P. (2001). Integrated Solid Waste Management: A Life Cycle Inventory, 2nd Edition, Blackwell Science, Oxford, London.
  9. ^ a b c d e f g h i j k l m n o p q r s t u NIRAS IC Konsorsiyum, 2017,T.C. Çevre ve Şehircilik Bakanlığı. Çevre ve Şehircilik Bakanlığı'nın Çevresel Etki Değerlendirmesi (ÇED) Alanında Kapasitesinin Güçlendirilmesi İçin Teknik Yardım Projesi, Ankara
  10. ^ Eswet,2013 Welcome - European Suppliers of Waste to Energy Technology (eswet.eu)
  11. ^ The World Bank,1999.. Decision Makers‟ Guide to Municipal Solid Waste Incineration, Washington, D.C.
  12. ^ a b c d e f g h i j k AVRUPA KOMİSYONU GENEL MÜDÜRLÜK (JRC) ORTAK ARAŞTIRMA MERKEZİ Geleceğe Yönelik Teknolojileri Araştırma Enstitüsü(Seville ), 2005,Entegre Kirliliğin Önlenmesi ve Kontrolü (IPPC) Atıkların Yakılmasına ilişkin Mevcut En İyi Tekniklere (BAT) yönelik Referans Dokümanının İdari Özeti,Seville
  13. ^ a b c d e f g h i (Sezer, K., 2012, Evsel Atık Yönetiminde Yakma Teknolojileri, 2012 Atık Yönetimi Sempozyumu,Antalya)
  14. ^ a b Waste Management, Waste to Energy, Volume 4, K.Thome-Kozmiensky, S. Thiel, 2014 (syf 49- 50)
  15. ^ a b (İSTAÇ,2015,Bursa Büyükşehir Belediyesi,Çevre Koruma ve Kontrol Dairesi Başkanlığı,BURSA ENTEGRE KATI ATIK YÖNETİM PLANI.)
  16. ^ European Commission, 2006.a. Integrated Pollution Prevention and Control Reference Document on the Best Available Techniques for Waste Incineration.
  17. ^ R&R Bilimsel ve Teknik Hizmetler Ltd. Şti & DHV Consultants,2010, Katı Atık Yakma Tesisleri İçin Teknolojiler ve Yer Seçim
  18. ^ Tezcakar,M., Can, O., 2010, Atıktan Enerji Eldesinde Termal Bertaraf Teknolojileri, IWES Bildiriler Kitabı, 150-155

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Çevre mühendisliği</span>

Çevre mühendisliği, doğal kaynakların kullanımı ve insan sağlığına uygun çevre koşullarının yaratılması ile ilgili mühendislik dalıdır. Diğer mühendislik dallarından farklı olarak, doğanın kaynaklarını tüketmeyi değil, doğaya sahip olduklarını geri vermeye çalışan bir mühendislik dalıdır.

<span class="mw-page-title-main">Biyogaz</span>

Biyogaz terimi temel olarak organik atıklardan kullanılabilir gaz üretilmesini ifade eder. Diğer bir ifade ile Oksijensiz ortamda mikrobiyolojik floranın etkisi altında organik maddenin karbondioksit ve metan gazına dönüştürülmesidir. Biyogaz elde edinimi temel olarak organik maddelerin ayrıştırılmasına dayandığı için temel madde olarak bitkisel atıklar ya da hayvansal gübreler kullanılabilmektedir. Kullanılan hayvansal gübrelerin biyogaza dönüşüm sırasında fermante olarak daha yarayışlı hale geçmesi sebebiyle dünyada temel materyal olarak kullanılmaktadır. Aynı zamanda tavuk gübrelerinden de oldukça verimli biyogaz üretimi sağlanabilmektedir. Tavuk gübresinin kullanımı tarım için önemlidir. çünkü bu gübre topraklarda verim amaçlı kullanılamaz. Topraklarda tuzluluğa sebep olurlar. Kullanılamayan bu gübre biyogaza dönüştürüldüğünde yarayışlı bir hal almış olur. Günümüzde biyogaz üretimi çok çeşitli çaplarda; tek bir evin ısıtma ve mutfak giderlerini karşılamaktan, jeneratörlerle elektrik üretimine kadar yapılmaktadır.

<span class="mw-page-title-main">Stirling motoru</span>

Stirling motoru, sıcak hava motoru olarak da bilinir. Dıştan yanmalı motorlu bir ısı makinesi tipidir. Isı değişimi prosesi, ısının mekanik harekete dönüşümünün ideal verime yakın olmasına izin verir.

<span class="mw-page-title-main">Tuğla</span> yapı malzemesi

Tuğla, harç gibi karışımlar ile birbirine tutturularak duvar inşasında kullanılan, pişmiş veya kurutulmuş kil bazlı topraktan elde edilen ses ve ısı yalıtımı için ana yapı malzemelerindendir. Çoğunlukla dikdörtgenler prizması şeklinde yapılmaktadır. Ev ve iş yeri yapımında, birden fazla alanda kullanılır. Örnek: Duvar oluşturma, havalandırma, soba ve ocak bacaları.

<span class="mw-page-title-main">Radyoaktif atık</span> İstenmeyen veya kullanılamayan radyoaktif maddeler

Radyoaktif atıklar, serbestleştirme sınırlarının üzerinde aktivite konsantrasyonu içeren ve bir daha kullanılması düşünülmeyen nükleer ve radyoaktif maddeler ile radyoaktif madde bulaşmış ya da radyoaktif olmuş yapı, sistem, bileşen ve malzemelerdir.

<span class="mw-page-title-main">Termik santral</span> ısı enerjisinin elektrik enerjisine dönüştürüldüğü santral türü

Termik santral, ana işletici makinesi buhar gücüyle çalışan güç santralıdır. Isıtılan su buhara dönüştürülerek bir elektrik üretecini süren buhar türbinini döndürmekte kullanılır. Türbinden geçen buhar Rankine çevrimi denilen yöntemle bir yüzey yoğunlaştırıcıda yoğunlaştırılırak geri suya dönüştürülür. Termik santralların tasarımları arasındaki en büyük farklılık kullandıkları yakıt tiplerine göredir. Bu tesisler ısı enerjisini elektrik enerjisine dönüştürmekte kullanıldığından bazı kaynaklarda enerji dönüşüm santrali olarak da geçer. Bazı termik santrallar elektrik üretmenin yanı sıra endüstriyel ve ısıtma amaçlı ısı üretimi, deniz suyunun tuzdan arındırılması gibi amaçlarla da kullanılır. İnsan üretimi CO2 emisyonunun büyük kısmını oluşturan fosil yakıtlı termik santralların çıktılarını azaltma yönünde yoğun çabalar harcanmaktadır.

<span class="mw-page-title-main">Vantilatör</span>

Vantilatör, aldığı hareket ile dönen çarkın (pervane) havayı bir hacimden alıp diğer bir hacme aktaran, havaya yön verme prensibi ile çalışan makine. Bu makinelere ayrıca çalışma şekline göre de isimler verilir. Bunlar aspiratör, fan, blower, körük şekilde adlandırılırlar. Vantilatörün eş anlamlısı ise yelletke sözcüğüdür.

Havayla çalışan diyaframlı pompalar endüstrinin birçok alanında değişik amaçlarla kullanılmaktadır. Pompa ölçüsüne uygun kapasitedeki bir kompresöre bağlanarak çalıştırılır. Elektrikle çalışmadığı ve içinde elektrikle çalışan parça barındırmadığı için patlamazlık (ex-proof) özelliği vardır. Sıklıkla bu nedenden dolayı patlayıcı üretiminde tercih edilmektedirler.

<span class="mw-page-title-main">İzmit Atık ve Artıkları Arıtma Yakma ve Değerlendirme A. Ş.</span>

İzmit Atık ve Artıkları Arıtma Yakma ve Değerlendirme A.Ş., İzmit Büyükşehir Belediyesi'ne bağlı bir kuruluştur.

Pirometalurji ekstraktif metalurji dallarından biridir. Temel amacı; kıymetli metalleri kazanmak için, cevhere bir dizi ısıl işlem uygulamak ve malzemenin bu işlemler sonucu fiziksel ve kimyasal olarak değişime uğramasını sağlamaktır. Bu şekilde kıymetli metallerin kazanılması hedeflenir.

<span class="mw-page-title-main">Bessemer ve Thomas Çeliği</span>

Bessemer ve Thomas Çeliği, çeliğin elde ediliş yöntemlerine göre sınıflandırılmış hallerinden birisidir. İlk defa 1856 yılında Henry Bessemer tarafından bulunan çelik elde ediliş yöntemi ardından Thomas Gillchrist tarafından 1876 yılında geliştirilmiş ve bu yöntem ile elde edilen tüm çeliklere Bessemer ve Thomas Çeliği adı verilmiştir.

<span class="mw-page-title-main">Bölgesel ısıtma sistemi</span>

Bölgesel ısıtma sistemi, bir veya birçok enerji kaynağında üretilen ısının önyalıtımlı boru sistemleri vasıtası ile ısı kullanıcılarına taşınarak ısınma ve sıcak su ihtiyaçlarının karşılandığı büyük ölçekli ısıtma sistemleridir. Bölgesel Isıtma Sistemine ısı, genellikle birleşik ısı ve güç sistemi, katı atık (çöp) yakma tesislerinin atık ısısı, endüstriyel atık ısı, jeotermal enerji, güneş enerjisi vb. ısı kaynaklarından sağlanır. Özellikle İskandinav ülkelerinin yoğunlukta olduğu pek çok ülkede elde edilen deneyimlere bağlı olarak bölgesel ısıtma sistemlerinin ekonomik, güvenilir ve diğer ısıtma sistemlerine göre çevreye daha çok duyarlı olduğu ispatlanmıştır.

<span class="mw-page-title-main">Biyoenerji</span> Yakın zamanda yaşamış organizmalardan elde edilen enerji

Biyoenerji, biyolojik kaynaklardan elde edilen malzemelerden sağlanan yenilenebilir enerjidir. Biyokütle, güneş ışığını kimyasal enerji şeklinde depolayan herhangi bir organik malzemedir. Yakıt olarak odun, odun atıkları, saman ve diğer mahsul artıkları, gübre, şeker kamışı ve çeşitli tarımsal işlemlerden elde edilen diğer birçok yan ürünü içerebilir.

Gerze Enerji Santrali, Sinop ilinin Gerze ilçesindeki Yaykıl köyü civarında kurulması planlanan enerji santralidir.

<span class="mw-page-title-main">Proses tasarımı</span>

Kimya mühendisliğinde maddelerin istenilen fiziksel ve kimyasal dönüşümü için ünitelerin seçimi ve sıralanmasına proses tasarımı adı verilir. Proses tasarımı kimya mühendisliğinin esasını oluşturan merkezidir. Bu alanın tüm unsurlarını bir araya getirdiğinden kimya mühendisliğinin zirvesi olarak düşünülebilir.

<span class="mw-page-title-main">Kimyasal tesisi</span>

Kimyasal tesisi, genellikle büyük ölçekte kimyasallar üreten bir endüstriyel proses tesisidir. Bir kimyasal tesisinin genel amacı, maddelerin kimyasal veya biyolojik dönüşümü ve birbirlerinden ayrılması yoluyla maddi zenginlik yaratmaktır. Kimyasal tesisleri üretim sürecinde özel ekipmanlar, üniteler ve teknolojiler kullanırlar. Polimer, ilaç, gıda, bazı içecek üretim tesisleri, enerji santralleri, petrol rafinerileri veya diğer rafineri çeşitleri, doğal gaz işleme ve biyokimya tesisleri, su ve atık su arıtım tesisleri, kirlilik kontrol ekipmanları gibi diğer tesis çeşitlerinin hepsi, akışkan sistemleri ve kimyasal reaktör sistemleri gibi kimyasal tesis teknolojilerine benzer teknolojiler kullanmaktadır. Bazı kaynaklar bir petrol rafinerisinin, bir ilaç veya bir polimer üreticisinin de bir kimyasal tesisi olarak kabul etmektedir.

<span class="mw-page-title-main">Kimyasal reaktör</span> içerisinde kimyasal reaksiyon gerçekleştirmek için tasarlanmış tanklar

Kimyasal reaktörler bir kimyasal reaksiyonun gerçekleştirildiği proses ekipmanlarıdır. Kimya mühendisliğinde proses tasarımı ve analizinde sık kullanılan klasik bir ünite prosesidir. Bir kimyasal reaktörün tasarımı, kimya mühendisliğinin birden fazla unsurunun kullanılmasını gerektirir. Reaktörler proseste ham maddelerin ürünlere dönüştüğü oldukça temel bir ekipman olduğundan proses tasarımı açısından büyük önem arz eder. Kimya mühendisleri bir reaksiyonun net bugünkü değerini en üst düzeye çıkarmak için reaktörler tasarlar. Tasarımcılar satın alma ve işletme maliyetini en düşük seviyelerde tutarken bir yandan da üretilen ürün miktarını en yüksek seviyede tutmak için reaksiyonun ürünler yönünde mümkün olan en yüksek verimle devamlılığını sağlarlar. Enerji girişi, enerji çıkışı, ham madde maliyetleri, işçilik vb. işletme giderlerine örnek olarak verilebilir. Isıtma, soğutma, basıncı artırmak için pompalama, sürtünmeden kaynaklı basınç düşüşü ve çöktürme gibi durumlar da enerji değişimlerine birer örnektir.

<span class="mw-page-title-main">Membran biyoreaktör sistemi</span>

Membran biyoreaktör (MBR) sistemi, biyolojik arıtım metotlarından biri olan aktif çamur prosesini membran ayırma prosesiyle birleştiren arıtım teknolojisidir.

<span class="mw-page-title-main">Piroliz</span> Malzemelerin asal bir ortamda yüksek sıcaklıklarda termal ayrışmasıdır

Piroliz malzemelerin asal bir ortamda yüksek sıcaklıklarda termal ayrışmasıdır. Kimyasal bileşim değişikliğini içerir. Kelime Yunanca kökenli pyro ("ateş") ve lysis ("ayırma") unsurlarından türetilmiştir.

<span class="mw-page-title-main">Kombine çevrim enerji santrali</span> kombine çevrim enerji santrali

Kombine çevrim enerji santrali, birbiri ardına sıralanmış, aynı ısı kaynağını kullanarak mekanik enerji üreten bir ısı motorları grubudur. Karada elektrik üretimi için kullanıldığı zaman kombine çevrim gaz türbini tesisi olarak adlandırılır. Benzer adlandırma, deniz taşıtlarında da kullanılır ve kombine gaz ve buhar tesisi olarak adlandırılır. İki veya daha fazla termodinamik çevrimin birleştirilmesi, genel verimliliği artırarak yakıt maliyetlerini azaltır.