İçeriğe atla

İngiliz bayrağı teoremi

İngiliz bayrağı teoremine göre, kırmızı kareler, mavi karelerle aynı toplam alana sahiptir.
Uzayda İngiliz bayrağı teoremi, kırmızı kareler, mavi karelerle aynı toplam alana sahiptir.

Öklid geometrisinde, İngiliz bayrağı teoremi, dikdörtgeni içinde bir noktası seçilirse, 'den dikdörtgenin iki karşıt köşesine olan Öklid mesafelerinin karelerinin toplamının, diğer iki karşıt köşenin toplamına eşit olduğunu söyler.[1][2][3] Denklem olarak aşağıdaki şekilde gösterilir:

Teorem ayrıca dikdörtgenin dışındaki noktalar için ve daha genel olarak Öklid uzayındaki bir noktadan uzaya gömülü bir dikdörtgenin köşelerine kadar olan mesafeler için de geçerlidir.[4] Daha genel olarak, bir noktasından paralelkenarın iki karşıt köşesine kadar olan uzaklıkların karelerinin toplamı karşılaştırılırsa, iki toplam genel olarak eşit olmayacak, ancak iki toplamın farkı noktasının seçimine değil yalnızca paralelkenarın şekline bağlı olacaktır.[5]

Teorem, Pisagor teoreminin bir genellemesi olarak da düşünülebilir. noktasını dikdörtgenin dört köşesinden herhangi birine yerleştirmek, dikdörtgenin köşegeninin karesini, Pisagor teoremi olan dikdörtgenin genişliğinin ve uzunluğunun karelerinin toplamına eşit olarak verir.

Teoremin ispatı

Kanıt için çizim

Şekilde gösterildiği gibi, , , ve kenarlarıyla sırasıyla , , ve noktalarında birleşen dik çizgileri noktasından dikdörtgenin kenarlarına çizin; bu dört nokta , , ve , bir ortodiyagonal dörtgen köşelerini oluşturur. Pisagor teoremini dik üçgenine uygulayarak ve olduğunu göz önünde bulundurarak,

bulunur ve benzer bir argüman ile 'den diğer üç köşeye olan mesafelerin uzunluklarının kareleri şu şekilde hesaplanabilir:

  • ,
  • ve
  • .

Bu nedenle:

İsimlendirme

Bu teorem ismini, 'den dikdörtgenin köşelerine doğru olan doğru parçaları çizildiğinde, ispatta kullanılan dikey çizgilerle birlikte, tamamlanan şeklin bir şekilde Birleşik Krallık Bayrağına benzemesinden alır.

Konuyla ilgili yayınlar

Dış bağlantılar

Kaynakça

  1. ^ Lardner (1848), The First Six Books of the Elements of Euclid, H.G. Bohn, s. 87 
  2. ^ Young (1917), Elementary Mathematical Analysis, The Macmillan company, s. 304 .
  3. ^ Bôcher (1915), Plane Analytic Geometry: with introductory chapters on the differential calculus, H. Holt and Company, s. 17, 13 Ekim 2020 tarihinde kaynağından arşivlendi, erişim tarihi: 12 Ekim 2020 .
  4. ^ Harvard-MIT Mathematics Tournament solutions 22 Aralık 2018 tarihinde Wayback Machine sitesinde arşivlendi., Problem 28.
  5. ^ Hadamard (2008), Lessons in Geometry: Plane geometry, American Mathematical Society, s. 136, ISBN 978-0-8218-4367-3, 25 Eylül 2014 tarihinde kaynağından arşivlendi, erişim tarihi: 12 Ekim 2020 .

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pisagor teoremi</span> Öklid geometrisinde bir dik üçgenin üç kenarı arasındaki bağıntı

Pisagor teoremi veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:

<span class="mw-page-title-main">Mesafe</span> ölçülebilir bir uzayda veya gözlemlenebilir bir fiziksel uzayda iki noktayı birleştiren düz çizginin uzunluğu

Mesafe (uzaklık), iki noktanın birbirlerinden ne kadar ayrı olduklarının sayısal ifadesidir. Metrik ölçüm sisteminde uzaklık birimi metredir ve m sembolü ile gösterilir.

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">Thales teoremi (çember)</span>

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Crossbar (Pasch) teoremi</span> Diğer iki ışın arasındaki bir ışın, ilk iki ışın arasındaki herhangi bir çizgi parçasını keser.

Geometride Crossbar (Pasch) teoremi, ışını ışını ile ışını arasındaysa, ışınının doğrusu parçasını keseceğini belirtir.

<span class="mw-page-title-main">Pappus'un alan teoremi</span> rastgele bir üçgenin üç kenarına iliştirilmiş üç paralelkenarın alanları arasındaki ilişkiyi verir

Pappus'un alan teoremi, verilen herhangi bir üçgenin üç kenarına yaslanmış üç paralelkenarın alanları arasındaki ilişkiyi tanımlar. Pisagor teoreminin bir genellemesi olarak da düşünülebilecek teorem, adını onu keşfeden Yunan matematikçi İskenderiyeli Pappus'tan almıştır.

<span class="mw-page-title-main">Gnomon teoremi</span> Bir gnomonda meydana gelen belirli paralelkenarlar eşit büyüklükte alanlara sahiptir.

Gnomon teoremi, bir gnomon'da meydana gelen belirli paralelkenarların eşit büyüklükte alanlara sahip olduğunu belirtir. Gnomon, geometride benzer bir paralelkenarı daha büyük bir paralelkenarın bir köşesinden çıkararak oluşturulan bir düzlem şeklidir; veya daha genel olarak, belirli bir şekle eklendiğinde, aynı şekle sahip daha büyük bir şekil oluşturan bir şekildir.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Brianchon teoremi</span>

Geometride Brianchon teoremi, bir konik kesit etrafındaki bir altıgen ile sınırlandırıldığında, ana köşegenlerinin tek bir noktada kesiştiğini belirten bir teoremdir. Adını Fransız matematikçi Charles Julien Brianchon'dan (1783–1864) almıştır.

<span class="mw-page-title-main">Kelebek teoremi</span> Bir çemberin başka iki kirişinin üzerinden çizilen kirişin orta noktası hakkındaki teorem

Kelebek teoremi, Öklid geometrisinin klasik bir sonucudur ve aşağıdaki gibi ifade edilebilir:

Matematikte, genelleştirilmiş Batlamyus teoremi olarak da bilinen Casey teoremi, adını İrlandalı matematikçi John Casey'den alan Öklid geometrisindeki bir teoremdir.

<span class="mw-page-title-main">Euler dörtgen teoremi</span>

Leonhard Euler (1707–1783) adını taşıyan Euler dörtgen teoremi veya Euler'in dörtgenler yasası, dışbükey bir dörtgenin kenarları ile köşegenleri arasındaki ilişkiyi açıklar. Pisagor teoreminin genellemesi olarak görülebilecek Paralelkenar yasasının bir genellemesidir. Bu nedenle Pisagor teoreminin dörtgenler açısından yeniden ifade edilmesi bazen Euler-Pisagor teoremi olarak adlandırılır.

Geometride demet teoremi; en basit durumda, gerçek Öklid düzlemindeki altı çember ve sekiz nokta üzerine bir ifadedir. Genel olarak, sadece oval Möbius düzlemleri tarafından meydana getirilen bir Möbius düzleminin bir özelliğidir. Demet teoremi Miquel teoremi ile karıştırılmamalıdır.

<span class="mw-page-title-main">Carnot teoremi (dikmeler)</span>

Adını Fransız matematikçi Lazare Carnot'dan alan Carnot teoremi, üçgenin (uzatılmış) kenarlarına dik olan üç doğrunun ortak bir kesişme noktası için gerek ve yeter koşulu tanımlar. Teorem ayrıca Pisagor teoreminin bir genellemesi olarak düşünülebilir.

Öklid geometrisinde, Erdős–Mordell eşitsizliği herhangi bir üçgeni ve içindeki noktası için, 'den kenarlara olan uzunlukların toplamının, 'den köşelere olan uzunlukların toplamının yarısına eşit veya daha az olduğunu belirten teoremdir. Teorem, adını Macar matematikçi Paul Erdős ve Amerika doğumlu İngiliz matematikçi Louis Mordell'den almıştır. Erdős (1935) eşitsizliği kanıtlama problemini ortaya attı; iki yıl sonra tarafından bir kanıt sağlandı. Ancak bu çözüm çok basit değildi. Sonraki basit ispatlar daha sonra Kazarinoff (1957), Bankoff (1958) ve Alsina & Nelsen (2007) tarafından verilmiştir.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Pompeiu teoremi</span>

Pompeiu teoremi, Romanyalı matematikçi Dimitrie Pompeiu tarafından keşfedilen bir düzlem geometrisi sonucudur. Teorem basittir, ancak klasik değildir. Aşağıdakileri ifade eder:

Bir eşkenar üçgen verildiğinde Düzlemde ABC ve ABC üçgeninin düzleminde bir P noktası, PA, PB ve PC uzunlukları bir üçgenin kenarlarını oluşturur.
<span class="mw-page-title-main">Ters Pisagor teoremi</span> Öklid geometrisinde dik üçgenlerle ilgili bir teorem

Geometride, ters Pisagor teoremi aşağıdaki gibidir: