İçeriğe atla

İndüksiyonla birleşmiş plazma

Şekil. 1. Analitik bir ICP meşalesinin resmi

İndüksiyonla birleşmiş plazma (ICP) veya transformatörle birleşmiş plazma (TCP),[1] enerjinin elektromanyetik indüksiyonla, yani zamanla değişen manyetik alanlarla üretilen elektrik akımlarıyla beslendiği bir tür plazma kaynağıdır.

İşleyiş

Şekil. 2. ICP meşalesinin yapısı.[2] A: dış kuvars boruya soğutma gazı akışı (gaz boruya eğri bir şekilde girer ve spiral çizerek yukarıya doğru hareket eder) B: deşarj gazı akışı (genellikle Ar gazı) C: örneği taşıyan taşıyıcı gazın akışı D: meşela içindeki güçlü manyetik alanı oluşturan indüksiyon bobini E: manyetik alanın kuvvet vektörleri F: plazma meşalesi (dejarj).

Üç tür ICP geometrisi vardır: düzlemsel (Şekil 3 (a)), silindirik[3] (Şekil 3 (b)) ve yarı toroidal (Şekil 3 (c)).

Düzlemsel geometride, elektrot, bir spiral (veya bobin) gibi sarılmış bir yassı metal uzunluğudur. Silindirik geometride, elektrot sarmal bir yay gibi ile yarı toroidal geometride, ana çapı boyunca iki eşit yarıya kesilmiş toroidal solenoiddir .

Bobinin içinden zamana göre değişen bir elektrik akımı geçtiğinde, bobinin etrafında akı olan ve zamanla değişen bir manyetik alan oluşur.

,

burada r, bobinin merkezine (ve kuvars tüpün merkezine) olan mesafedir.

Faraday-Lenz' in indüksiyon yasasına göre, bu, seyreltilmiş gazda azimut elektromotor gücü yaratır:

,

Bu güç elektrik alan kuvvetlerine karşılık gelir ve

,

plazma oluşumu sağlayan 8 şeklinde elektron yörüngelerinin oluşumuna öncülük eder. Bu durumun r değerine bağlılığı, gaz iyon hareketinin sıcaklığın en yüksek olduğu alevin dış bölgesinde en yoğun olduğunu göstermektedir. Gerçek bir ICP meşalesinde, alev soğutma gazı tarafından dışarıdan soğutulur, bu yüzden en sıcak dış kısım termal dengededir. Dış kısımın sıcaklığı 5 000-6 000 K' ye ulaşır.[4]

Bobini içeren RLC devresinde kullanılan alternatif akımın frekansı genellikle 27–41 MHz' dir. Plazmayı tetiklemek için, gaz çıkışındaki elektrotlarda bir kıvılcım üretilir. Argon, yaygın olarak kullanılan bir seyretilmiş gaz örneğidir. Plazmanın yüksek sıcaklığı birçok elementin belirlenmesini sağlar ve ek olarak, yaklaşık 60 element meşalede % 90' ın üzerinde iyonlaşma sergiler. ICP meşale yaklaşık 1250–1550 W güç harcar, ancak bu durum, numunenin temel bileşimine göre değişir (farklı iyonlaşma enerjileri nedeniyle).[4]

Uygulamalar

Şekil. 3. Konvansiyonel Plazma İndüktörleri

Plazma elektron sıcaklıkları ~ 60.000 K ile ~ 100.000 K (~ 6 eV - ~ 100 eV), arasında değişebilir ve genellikle nötr türlerin sıcaklığından birkaç seviye daha sıcaktır. Argon ICP plazma deşarj sıcaklıkları tipik olarak ~ 5.500 ila 6.500 K arasındadır[5] ve bu nedenle güneşin yüzeyinde (fotosfer) ulaşılan sıcaklık (~ 4,500 K ila ~ 6,000 K) ile karşılaştırılabilir seviyededir. ICP deşarj 1015 cm−3 mertebesinde, nispeten yüksek bir elektron yoğunluğuna sahiptir. Sonuç olarak, ICP deşarjları, yüksek yoğunluklu bir plazmaya (High-density plasma/HDP) ihtiyaç duyulan alanlarda geniş uygulamalara sahiptir.

ICP deşarjların bir başka faydası, nispeten kontaminasyondan yoksun kalmalarıdır. Bunun sebebi elektrotların reaksiyon odasının tamamen dışında olmasıdır.

Ayrıca bakınız

  • Darbeli indüktif itici
  • İndüksiyon plazma teknolojisi
  • Plazma fiziği makalelerinin listesi

Kaynakça

  1. ^ High density fluorocarbon etching of silicon in an inductively coupled plasma: Mechanism of etching through a thick steady state fluorocarbon layer 7 Şubat 2016 tarihinde Wayback Machine sitesinde arşivlendi. T. E. F. M. Standaert, M. Schaepkens, N. R. Rueger, P. G. M. Sebel, and G. S. Oehrleinc
  2. ^ Lauri H. J. Lajunen; P. Perämäki; Royal Society of Chemistry (Great Britain) (2004). Spectrochemical Analysis by Atomic Absorption and Emission (İngilizce). Royal Society of Chemistry. ISBN 978-0-85404-624-9. 
  3. ^ Pascal Chabert; Nicholas Braithwaite (24 Şubat 2011). Physics of Radio-Frequency Plasmas (İngilizce). Cambridge University Press. ISBN 978-0521-76300-4. 
  4. ^ a b Arşivlenmiş kopya. 4 Temmuz 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Kasım 2019. 
  5. ^ Gunnar Nordberg (2007). Handbook on the Toxicology of Metals (İngilizce). ISBN 9780123694133. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Düzgün dairesel hareket</span>

Düzgün dairesel hareket, sabit bir kuvvetin etkisinde, bir çember üzerinde süratin değişmediği harekettir.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Plazma</span> gaz haldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal reaksiyonun kontrollü etkileşim süreci

Plazma, gaz hâldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal tepkimenin kontrollü etkileşim sürecine verilen genel ad. Daha kolay bir tanımla; atomun elektronlardan arınmış hâlidir.

Kapasite veya diğer adıyla sığa, bir cismin elektrik yükü depo etme yeteneğidir. Elektrikle yüklenebilen her cisim sığa barındırmaktadır. Enerji depolama aracının en yaygın formu paralel levhalı sığaçlardır. Paralel levhalı sığaçta, sığa iletken levhanın yüzey alanıyla doğru orantılıdır ve levhalar arasındaki uzaklığın ayrımıyla da ters orantılıdır. Eğer levhaların yükleri +q ve –q ise ve V levhalar arasındaki voltajı veriyorsa, sığa C şu şekildedir;

Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.

Açısal frekans periyodik harekette birim zaman içinde kaç radyan olduğunun ölçüsüdür.

Perdeleme, hareketli yük taşıyıcılarının varlığından ortaya çıkan elektrik alanının sönümünü ifade eder. Metaller ve yarıiletkenlerdeki iletim elektronları ve iyonize olmuş gazlar(klasik plazma) gibi yük taşıyıcı akışkanlarda gözlemlenir. Elektriksel olarak yüklenmiş parçacıklardan oluşan bir akışkanda, her çift parçacık Coulomb kuvveti ile etkileşir,

.

Fizikte akustik dalga denklemi, akustik dalgaların bir ortamda yayılımını düzenler. Denklemin biçimi ikinci dereceden kısmi diferansiyel denklemdir. Denklem, akustik basınç ve parçacık hızı u nun gelişimini, konum r ve zaman türünden fonksiyon olarak ifade eder. Denklemin basitleştirilmiş bir formu akustik dalgaları sadece bir boyutlu uzayda, daha genel formu ise dalgaları üç boyutta tanımlar.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

<span class="mw-page-title-main">Üçgen dalga</span>

Üçgen dalga, ismini üçgen şeklinden alan bir sinüzoidal olmayan dalga şeklidir. Üçgen dalga periyodik, parçalı lineer, sürekli gerçel bir fonksiyondur.

<span class="mw-page-title-main">Butterworth filtre</span>

Butterworth filtre passband içinde mümkün olduğu kadar düz bir frekans responsa sahip olabilmek için dizayn edilmiş bir Sinyal işleme filtre tipidir. Ayrıca maksimum düz magnitüd filtre olarak da tarif edilir. İlk defa 1930 yılında ingiliz mühendis ve fizikçi Stephen Butterworth tarafından "On the Theory of Filter Amplifiers". makalesinde tarif edilmiştir.

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Lamb kayması, adını Willis Lamb'den alan, hidrojen atomunun kuantum elektrodinamiğindeki 2S1/2 ve 2P1/2 enerji düzeyleri arasındaki küçük farklılıktır. Dirac denklemine göre, 2S1/2 ve 2P1/2 orbitalleri (yörüngeleri) aynı enerjiye sahip olmalıdır. Ancak, boşluktaki elektronlar arasındaki etkileşim, 2S1/2 ve 2P1/2 enerji düzeylerinde küçük bir enerji değişimine sebep olur. Lamb ve Robert Retherford bu değişimi 1947'de ölçmüşlerdir ve bu ölçüm, ıraksamayı açıklamak için tekrar normalleştirme teorisine teşvik edici bir unsur olmuştur. Bu, Julian Schwinger, Richard Feynman, Ernst Stueckelberg ve Sin-Itiro Tomonaga tarafından geliştirilmiş modern kuantum elektrodinamiğinin müjdecisiydi. Lamb, 1955 yılında Lamb kayması ile ilgili keşiflerinden ötürü Nobel Fizik Ödülü'nü kazandı.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

<span class="mw-page-title-main">Grup hızı</span> dalga şiddetinin genel şekli ile boşlukta yayılan hızı

Bir dalganın grup hızı, dalga şiddetinin genel şekli ile boşlukta yayılan hızıdır. Örneğin, bir taşın, durgun bir su birikintisinin ortasına atıldığında ne olabileceğini düşünelim. Taş suyun yüzeyine geldiği anda, o bölgede dairesel dalgalanmalar meydana gelir. Kısa bir süre içinde, hareketsiz bir merkezden yayılan bu dalgalar dairesel halkalara dönüşür. Giderek genişleyen bu dairesel halkalar, farklı hızlarda yayılan ve farklı dalga boylarına sahip daha küçük dalgaları kendi içerisinde birbirinden ayırabilen bir dalga grubudur. Uzun dalgalar, tüm gruba kıyasla daha hızlı yol alabilirken; sona doğru yaklaştıkça kaybolurlar. Kısa dalgalar ise daha yavaş yol alırlar ve bir önceki dalga sınırına ulaştıklarında yok olurlar.

<span class="mw-page-title-main">Wiedemann-Franz kanunu</span>

Wiedemann-Franz kanunu, metallerde ısı iletkenliğinin (κ) elektrik iletkenliğine (σ) oranının sıcaklık (T) ile doğru orantılı olduğunu söyleyen kanundur.

<span class="mw-page-title-main">Doğrusal olmayan optik</span>

Doğrusal olmayan optik ya da nonlineer optik, ışığın doğrusal olmayan sistem ve malzemelerdeki davranışı ile özelliklerini inceleyen optiğin bir alt dalıdır. Bu malzemelerde elektrik alan () ile polarizasyon yoğunluğu () arasındaki ilişki doğrusal değildir; bu durum daha çok yüksek genlikte (108 V/m seviyelerinde) ışık veren lazerlerde ve lityum niobat gibi kristal yapılarında görülür. Schwinger sınırından daha kuvvetli alanlarda vakum da doğrusallığını kaybeder. Süperpozisyon prensibi bu malzemeler için geçerli değildir.

<span class="mw-page-title-main">Duran dalga</span>

Fizikte duran dalgalar, zamana göre salınım yapmasına rağmen belli bir bölgede sabit duran dalgalardır. Bu dalgaların uzayda herhangi bir noktadaki maksimum genliği zamana göre sabittir ve salınımları eş fazdadır. Bir duran dalgada genliğin minimum kaldığı noktalar düğüm (node), maksimum olduğu noktalar ise anti-düğüm (anti-node) olarak bilinir.

<span class="mw-page-title-main">Dağılma</span>

Elektromanyetizmada ve optikte dağılma ya da dispersiyon, elektromanyetik dalganın ilerlediği ortamdaki faz hızının frekansına bağlı olması durumudur. Kırılma indisinin frekansa bağlılığı olarak da tanımlanabilmektedir. Bu özelliğe sahip ortamlar dağıtıcı ortamlar olarak bilinir. Faz hızı ile grup hızının eşit olması durumunda dağılma sıfırlanır; grup hızının daha büyük olması anormal dağılma olarak bilinir. İletim hatları ve optik fiberler gibi dalga kılavuzlarında dalga yayılımını büyük ölçüde etkileyen dağılma, dalga denkleminin geçerliği olduğu diğer sistemlerde de gözlemlenebilmektedir.