İçeriğe atla

İndüklenmiş sürükleme

Bir kanatta basınç dağılımı ve indüklenen akış direnci

İndüklenmiş sürükleme, sonlu bir yüzeyin oluşturduğu kaldırma kuvvetinden kaynaklanan sürükleme kuvvetine verilen isimdir.

İndüklenmiş Sürüklemenin Kaynakları

Pratikte sonsuz bir kanat bulunamaz. Dolayısıyla kanat profilleri iki boyutlu modellense de aslında bir kanat üç boyutludur ve bu kanat üzerine akım gönderildiği zaman, oluşan tepki kuvvetinin iki bileşeni vardır: Profilin varlığından kaynaklanan parazit sürükleme kuvveti ve kaldırma kuvveti. Genelde kaldırma kuvveti parazit sürükleme kuvvetinden daha büyük bir kuvvet olarak ölçülür.

İşte bu sebeple basıncın yüksek olduğu alt bölgeden, basıncın düşük olduğu üst bölgeye kanat ucu çevresini dolaşarak geçen (akıma dik bir doğrultuda) başka bir akım görülür. (Bkz: Kanat ucu girdabı) İşte bu girdap akımı ilave bir sürüklemeye sebep olur fakat bu sürükleme, parazit sürüklemenin aksine akım hızının karesiyle ters orantılıdır.

Kaldırma kuvvetini arttıran her etken, indüklenmiş sürüklemeyi de arttırır. (Örn: Hücum açısı)

İndüklenmiş Sürüklemenin Azaltılması

İndüklenmiş sürükleme kuvveti, aşağıdaki yollarla zayıflatılabilir:

  • Kanat açıklığının arttırılması: Kanat ucu girdapları kanat uçlarına yakın bölgelerde gerçekleştiğinden arttırılmış bir kanat açıklığı, kanadın bu girdaptan etkilenme yüzdesini düşürecektir.
  • Kanat ucu plakası kullanımı: Kanat ucunda bu girdabın gerçekleşmesini engelleyecek ya da etkisini azaltacak bir kanat ucu parçası, indüklenmiş sürüklemeyi önemli ölçüde düşürebilir.

İndüklenmiş Sürüklemenin Hesaplanması

İndüklenmiş sürükleme aşağıdaki gibi hesaplanır:

ve

Bunun sonucu olarak:

Böylelikle:

Açıklık oranı,
Sürükleme katsayısı,
Taşıma katsayısı,
İndüklenmiş sürükleme
Eliptik taşıma dağılımına yakınsama faktörü 1.05 -1.15 arası bir değer.
Taşıma,
Kanat alanı,
Gerçek hava hızı,
Etkili hava hızı,
Hava yoğunluğu ve,
1.225 kg/m³, Deniz seviyesinde hava yoğunluğu, Standart atmosfer şartları

Diğer sürükleme kaynaklarıyla etkileşim

Toplam sürükleme, indüklenmiş sürükleme ve parazit sürüklemenin toplamıdır.

Ayrıca bakınız

İlgili Araştırma Makaleleri

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

<span class="mw-page-title-main">Sürükleme</span>

Sürükleme; akışkanlar mekaniğinde bir cismin, bir akışkan içindeki hareketine gösterdiği direnç. Sürükleme İngilizce drag sözcüğüne atfen "D" harfi ile gösterilir.

<span class="mw-page-title-main">Reynolds sayısı</span>

Akışkanlar dinamiği alanında, Reynolds sayısı, farklı durumlarda akışkan akışı desenlerini tahmin etmeye yardımcı olan bir boyutsuz sayıdır ve eylemsizlik kuvvetleri ile viskoz kuvvetler arasındaki oranı ölçer. Düşük Reynolds sayılarında, akışlar genellikle laminer akış tarafından domine edilirken, yüksek Reynolds sayılarında akışlar genellikle türbülanslı olur. Türbülans, akışkanın hız ve yönündeki farklılıklardan kaynaklanır ve bazen bu yönler kesişebilir veya akışın genel yönüne ters hareket edebilir. Bu girdap akımları, akışı karıştırmaya başlar ve bu süreçte enerji tüketir, bu da sıvılarda kavitasyon olasılığını artırır.

<span class="mw-page-title-main">Özdirenç</span>

Özdirenç (resistivity) birim uzunluk ve kesit alana sahip bir iletkenin elektrik akımına karşı ne ölçüde direnç gösterdiğinin bir ölçüsüdür. Özdirenç iletkenin geometrik ölçülerinden bağımsız bir büyüklük olup, sadece iletkenin yapıldığı maddenin özellikleriyle ilgilidir.

Hubble kanunu, fiziksel kozmolojide gözlemlere verilen isimdir: uzayın derinliklerinde gözlenen nesnelerin dünyadan uzak göreceli bir hızda yorumlanabilir bir Doppler kaymasına sahip olduğu bulunur ve dünyanın gerisinde kalan çeşitli galaksilerin bu Doppler kaymasıyla ölçülen hızı yaklaşık birkaç yüz ışık yılı uzaklığındaki galaksiler için uzaklıklarıyla doğru orantılıdır. Bu normal olarak gözlemlenebilir evrenin uzaysal hacminin genişlemesinin doğrudan bir gözlemi olarak yorumlanır.

Fizikte akustik dalga denklemi, akustik dalgaların bir ortamda yayılımını düzenler. Denklemin biçimi ikinci dereceden kısmi diferansiyel denklemdir. Denklem, akustik basınç ve parçacık hızı u nun gelişimini, konum r ve zaman türünden fonksiyon olarak ifade eder. Denklemin basitleştirilmiş bir formu akustik dalgaları sadece bir boyutlu uzayda, daha genel formu ise dalgaları üç boyutta tanımlar.

Sıkışabilir akışkan bir ortamda yol alan herhangi bir araç ya da gövde ye ait burun konisi kısmının aerodinamik tasarımındaki, önemli bir problem burun konisinin geometrik şeklinin belirlenmesidir. Burun konisinin şekli optimum performans için gereklidir. Dönel katı cisim şekil tanımlamasının gerektiği işler gibi birçok uygulamalar, akışkan bir ortamda çok hızlı hareket eden böyle bir cismin karşılaşacağı direncin en aza indirilmesini gerektirir.

Ses enerjisi, titreşim veya maddenin salınımı ile ilgili enerji biçimidir. Ses dalgalarının yayılması için bazı materyala ihtiyaç vardır.

Aerodinamik bölümünde bahsedilen aerodinamik sürüklenim, bir akışkan yönünde hareket halinde olan herhangi bir katı cisme etki eden akışkan sürüklenim kuvvetine denir. Cisim baz alındığında bu kuvvet cismin yüzeyine etki eden basınç dağılımlarından(Dp) ve cisme etki eden kayma kuvvetlerinden(akışkanlığın sonucu [Df]) meydana gelir. Akışın özelliklerine göre hesaplama yapıldığında sürüklenim kuvveti 3 temel birime bağlıdır : şok dalgaları, girdaplar ve akışkanlık.

Akışkanlar dinamiğinde, bir sıvı tarafından çevrelenmiş ve hareket halinde olan bir cisim tarafından hissedilen sürüklenim kuvvetini bulmak için sürüklenim denklemi kullanılır. Bu formül belli koşullar altında daha tutarlı sonuçlar verir:

Akışkanlar dinamiğinde, sürüklenim bir sıvı içerisinde hareket eden bir cismin hareket yönüne zıt yönde etki eden kuvvet topluluğuna denir. Bu kuvvet iki sıvı yüzeyi arasında veya bir katı ve bir sıvı yüzeyi arasında olabilir. Diğer durdurucu kuvvetler nazaran sürüklenim kuvveti hıza bağlıdır. Bir sıvının akış yönü hizasında bulunan katı bir cisme göre, sürüklenim kuvvetleri sıvının hızını her zaman azaltır.

<span class="mw-page-title-main">Dikey eksenli rüzgâr türbini</span>

Dikey eksenli rüzgar türbini (DERT), ana rotor milinin rüzgara enine yerleştirildiği ve ana bileşenlerin türbinin tabanında yer aldığı bir rüzgar türbin türüdür. Bu düzenleme, jeneratör ve dişli kutusunun yere yakın yerleştirilmesine olanak tanıyarak servis ve onarımı kolaylaştırır. DERT'lerin rüzgara doğrultulmasına gerek yoktur, bu ise rüzgar algılama ve yönlendirme mekanizmalarına olan ihtiyacı ortadan kaldırır. İlk tasarımların başlıca dezavantajları arasında her devir sırasında önemli tork dalgalanması ve kanatlar üzerindeki büyük bükülme momentleri vardı. Daha sonraki tasarımlar, kanatları sarmal olarak süpürerek tork dalgalanmasını giderdi.

<span class="mw-page-title-main">Terminal hızı</span>

Terminal hızı, bir nesnenin bir akışkanın içinde düşerken ulaşabileceği maksimum hızdır. Sürükleme kuvveti (Fd) ve kaldırma kuvvetinin toplamı, nesneye etki eden aşağı doğru yerçekimi kuvvetine (Fg) eşit olduğunda bu hıza ulaşılmaktadır. Cisim üzerindeki net kuvvet sıfır olduğundan, cismin ivmesi sıfırdır.

<span class="mw-page-title-main">Rüzgar türbini aerodinamiği</span>

Rüzgarın enerjisi, rüzgar türbininin dönen kanatlarına rüzgarın uyguladığı aerodinamik kuvvetler yoluyla türbinin alternatöründe elektrik enerjisine çevrilir. Bu nedenle aerodinamik hesaplamalar rüzgar türbininde önemlidir. Çoğu makine gibi rüzgar türbinleri de hepsi farklı enerji kazanım kavramlarına dayanır.

<span class="mw-page-title-main">Sürükleme katsayısı</span> bir nesnenin hava veya su gibi sıvı bir ortam içinde sürtünmesi ya da direnç göstermesini nicelendirmek için kullanılan boyutsuz miktar

Akışkanlar dinamiği alanında, sürükleme katsayısı, bir nesnenin hava veya su gibi bir akışkan ortamında maruz kaldığı sürükleme veya direnç miktarını belirlemek için kullanılan bir boyutsuz niceliktir. Sürükleme denkleminde kullanılır ve daha düşük bir sürükleme katsayısı, nesnenin daha az aerodinamik veya hidrodinamik sürüklemeye sahip olacağını ifade eder. Sürükleme katsayısı her zaman belirli bir yüzey alanına bağlı olarak değerlendirilir.

Akışkanlar dinamiği alanında, kaldırma katsayısı, bir kaldırma gövdesi tarafından üretilen kaldırma kuvvetini, gövde etrafındaki akışkan yoğunluğuna, akışkan hızına ve ilgili referans alanına bağlayan bir boyutsuz niceliktir. Kaldırma gövdesi, bir kanat profili veya sabit kanatlı uçak gibi komple bir profil taşıyan gövde olabilir. CL, gövdenin akışa olan hücum açısı, Reynolds sayısı ve Mach sayısının bir fonksiyonudur. Kesit kaldırma katsayısı cl, bir iki boyutlu profil kesitinin dinamik kaldırma özelliklerini ifade eder ve referans alan yerine veter hattı kullanılır.

<span class="mw-page-title-main">Stokes sayısı</span>

Stokes sayısı (Stk), George Gabriel Stokes'un adını taşıyan ve parçacıkların bir akışkan akışı içerisinde süspansiyonda gösterdiği davranışı karakterize eden bir boyutsuz sayıdır. Stokes sayısı, bir parçacığın karakteristik zamanı ile akışın veya bir engelin karakteristik zamanı arasındaki oran olarak şu şekilde tanımlanır:

<span class="mw-page-title-main">Weber sayısı</span>

Weber sayısı (We), akışkanlar mekaniği alanında farklı iki akışkan arasındaki ara yüzeylerin bulunduğu akışkan akışlarını analiz ederken sıkça kullanılan bir boyutsuz sayıdır ve özellikle yüksek derecede eğilmiş yüzeylere sahip çok fazlı akışlar için oldukça faydalıdır. Bu sayı, Moritz Weber (1871–1951)'in adıyla anılmaktadır. Bu sayı, akışkanın eylemsizliğinin yüzey gerilimine kıyasla göreceli önemini ölçmek için kullanılan bir parametre olarak düşünülebilir. İnce film akışlarının ve damlacık ile kabarcık oluşumlarının analizinde büyük önem taşır.