İçeriğe atla

İnaktif aşı

İnaktif aşı
Birinci Dünya Savaşı'nda askerler için uygulanan tifo profilaksisi.
Diğer adlarÖlü aşı
UzmanlıkHalk sağlığı, immünoloji, aile hekimliği, genel pratisyenlik
KullanımlarBulaşıcı hastalıkların önlenmesi
SıklıkDoğumdan yetişkinliğe
SonuçlarBireylerde aktif bağışıklık gelişimi; sürü bağışıklığına katkı

İnaktif aşı (veya ölü aşı), kültürde yetiştirilen ve daha sonra hastalık üretme kapasitesini yok etmek için öldürülen virüs partikülleri, bakteriler veya diğer patojenlerden oluşan bir aşıdır. Buna karşılık, canlı aşılar hâlâ canlı olan (ancak neredeyse her zaman zayıflatılmış) patojenleri kullanır. İnaktif aşılar için patojenler kontrollü koşullar altında yetiştirilir ve enfektiviteyi azaltmak ve böylece aşıdan kaynaklanan enfeksiyonu önlemek için bir araç olarak öldürülür.[1]

İnaktif aşılar ilk olarak 1800'lerin sonlarında ve 1900'lerin başlarında kolera, veba ve tifo için geliştirilmiştir.[2] Günümüzde influenza, çocuk felci (IPV), kuduz, hepatit A ve boğmaca dahil olmak üzere birçok hastalık için inaktif aşılar mevcuttur.[3]

İnaktif patojenler bağışıklık sistemi tarafından canlı patojenlerden daha zayıf bir yanıt üretme eğiliminde olduğundan, patojene karşı etkili bir bağışıklık yanıtı sağlamak için bazı aşılarda immünolojik adjuvanlar ve çoklu "güçlendirici" enjeksiyonlar gerekebilir.[1][4][5] Zayıflatılmış aşılar genellikle sağlıklı insanlar için tercih edilir çünkü tek bir doz genellikle güvenli ve çok etkilidir. Bununla birlikte, bazı insanlar zayıflatılmış aşıları alamazlar çünkü patojen onlar için çok fazla risk oluşturur (örneğin, yaşlı insanlar veya bağışıklık yetmezliği olan insanlar). Bu hastalar için inaktive aşı koruma sağlayabilir.

Mekanizma

Patojen partiküller yok edilir ve bölünemez, ancak patojenler bağışıklık sistemi tarafından tanınmak ve adaptif bir bağışıklık tepkisi uyandırmak için bütünlüklerinin bir kısmını korurlar.[6][7] Doğru üretildiğinde aşı bulaşıcı değildir, ancak yanlış inaktivasyon sağlam ve bulaşıcı partiküllerle sonuçlanabilir.[]

Bir aşı uygulandığında, antijen bir antijen sunucu hücre (ASH) tarafından alınır ve aşılanmış kişilerde boşaltıcı bir lenf düğümüne taşınır. ASH, antijenin bir parçasını, bir epitopu, büyük bir histo-uyumluluk kompleksi (MHC) molekülü ile birlikte yüzeyine yerleştirecektir. Artık T hücreleri ile etkileşime girebilir ve onları aktive edebilir. Ortaya çıkan yardımcı T hücreleri daha sonra antikor aracılı veya hücre aracılı bir bağışıklık yanıtını uyaracak ve antijene özgü bir adaptif yanıt geliştirecektir.[8][9] Bu süreç, spesifik patojene karşı immünolojik bir hafıza oluşturur ve bağışıklık sisteminin bu patojenle daha sonraki karşılaşmalarda daha etkili ve hızlı bir şekilde yanıt vermesini sağlar.[6][8][9]

İnaktif aşılar, öncelikle antikor aracılı bir bağışıklık yanıtı üretme eğilimindedir.[3][10] Bununla birlikte, kasıtlı adjuvan seçimi, inaktif aşıların daha güçlü bir hücre aracılı bağışıklık tepkisini uyarmasına olanak tanır.[1][7]

Türler

İnaktif aşılar genellikle canlı olmayan aşıları ifade eder.[3][8] Patojeni inaktive etmek için kullanılan yönteme bağlı olarak daha da sınıflandırılırlar:[3][4]

  • Tüm patojen inaktive aşılar, tüm bir patojen ısı, kimyasallar veya radyasyon kullanılarak 'öldürüldüğünde' üretilir,[5] ancak insan aşılarında yalnızca formaldehit ve beta-Propiolakton maruziyeti yaygın olarak kullanılmaktadır.[11][12]
  • Alt ünite aşılar, patojenin çoğalması veya hayatta kalması için gerekli olan veya ters reaksiyonlara neden olabilecek diğer bileşenleri çıkarırken, patojene karşı bir yanıt oluşturmak için bağışıklık sistemini en iyi şekilde uyaran antijenlerin saflaştırılmasıyla üretilir.[4][5][12]
  • Bölünmüş virüs aşıları, viral zarfı bozmak için bir deterjan kullanılarak üretilir.[4][13] Bu teknik birçok influenza aşısının geliştirilmesinde kullanılmaktadır.[14]
  • Toksoit aşılar, bakteriler tarafından üretilen toksinlerin inaktive edilmesiyle oluşturulur.[3][15] Toksoit, toksine karşı bir bağışıklık tepkisi oluşturur.[16]

Örnekler

Türler şunları içerir:[17]

Avantajlar ve dezavantajlar

Avantajlar

  • İnaktive patojenler canlı patojenlere göre daha stabildir. Artan stabilite, inaktif aşıların depolanmasını ve taşınmasını kolaylaştırır.[8][16][18]
  • Canlı zayıflatılmış aşıların aksine, inaktif aşılar virülan forma dönüşemez ve hastalığa neden olamaz.[6][10] Örneğin, oral çocuk felci aşısında (OPV) bulunan canlı zayıflatılmış poliovirüs formunun virülan hale geldiği nadir durumlar olmuştur ve bu da kontrollü vahşi tip çocuk felci bulaşmasının olduğu birçok ülkede OPV'nin yerini inaktive çocuk felci aşısının (IPV) almasına yol açmıştır.[6][9]
  • Canlı zayıflatılmış aşıların aksine, inaktif aşılar çoğalmaz ve bağışıklık sistemi baskılanmış bireyler için kontrendike değildir.[6][7][8]

Dezavantajlar

  • İnaktif aşıların, canlı zayıflatılmış aşılara kıyasla uzun süreli bağışıklık için güçlü bir bağışıklık yanıtı üretme yeteneği daha düşüktür.[3] Koruyucu bağışıklığı üretmek ve sürdürmek için genellikle adjuvanlar ve güçlendiriciler gereklidir.[10][16]
  • Öldürülmüş tüm organizma aşılarının oluşturulması için patojenlerin kültürlenmesi ve inaktive edilmesi gerekir.[6][9] Bu süreç, genetik aşılara kıyasla aşı üretimini yavaşlatmaktadır.[8]

Kaynakça

  1. ^ a b c Petrovsky N, Aguilar JC (October 2004). "Vaccine adjuvants: current state and future trends". Immunology and Cell Biology. 82 (5): 488-496. doi:10.1111/j.0818-9641.2004.01272.x. PMID 15479434. 
  2. ^ Plotkin SA, Plotkin SL (October 2011). "The development of vaccines: how the past led to the future". Nature Reviews. Microbiology (3 Ekim 2011 tarihinde yayınlandı). 9 (12): 889-893. doi:10.1038/nrmicro2668. PMID 21963800. 
  3. ^ a b c d e f Wodi AP, Morelli V. "Chapter 1: Principles of Vaccination" (PDF). Hall E, Wodi AP, Hamborsky J, Morelli V, Schilllie S (Ed.). Epidemiology and Prevention of Vaccine-Preventable Diseases (14.14yıl=2021 bas.). Washington, D.C.: Public Health Foundation, Centers for Disease Control and Prevention. 30 Aralık 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Nisan 2023. 
  4. ^ a b c d WHO Expert Committee on Biological Standardization (19 Haziran 2019). "Influenza". World Health Organization (WHO). 22 Ekim 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Ekim 2021. 
  5. ^ a b c "Types of Vaccines". Vaccines.gov. U.S. Department of Health and Human Services. 23 Temmuz 2013. 9 Haziran 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Mayıs 2016. 
  6. ^ a b c d e f Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M (March 2018). "Understanding modern-day vaccines: what you need to know". Annals of Medicine. 50 (2): 110-120. doi:10.1080/07853890.2017.1407035. PMID 29172780. 
  7. ^ a b c Slifka MK, Amanna I (May 2014). "How advances in immunology provide insight into improving vaccine efficacy". Vaccine. 32 (25): 2948-2957. doi:10.1016/j.vaccine.2014.03.078. PMC 4096845 $2. PMID 24709587. 
  8. ^ a b c d e f Pollard AJ, Bijker EM (February 2021). "A guide to vaccinology: from basic principles to new developments". Nature Reviews. Immunology. 21 (2): 83-100. doi:10.1038/s41577-020-00479-7. PMC 7754704 $2. PMID 33353987. 
  9. ^ a b c d Karch CP, Burkhard P (November 2016). "Vaccine technologies: From whole organisms to rationally designed protein assemblies". Biochemical Pharmacology. 120: 1-14. doi:10.1016/j.bcp.2016.05.001. PMC 5079805 $2. PMID 27157411. 
  10. ^ a b c Plotkin S, Orenstein WA, Offit PA, (Ed.) (2018). "Technologies for Making New Vaccines". Plotkin's vaccines (7.7isbn=978-0-323-39302-7 bas.). Philadelphia, PA: Elsevier. OCLC 989157433. 
  11. ^ Sanders B, Koldijk M, Schuitemaker H (2015). "Inactivated Viral Vaccines". Vaccine Analysis: Strategies, Principles, and Control: 45-80. doi:10.1007/978-3-662-45024-6_2. ISBN 978-3-662-45023-9. PMC 7189890 $2. 
  12. ^ a b Hotez, Peter J.; Bottazzi, Maria Elena (27 Ocak 2022). "Whole Inactivated Virus and Protein-Based COVID-19 Vaccines". Annual Review of Medicine. 73 (1): 55-64. doi:10.1146/annurev-med-042420-113212. ISSN 0066-4219. PMID 34637324. 15 Nisan 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Nisan 2022. 
  13. ^ Chen J, Wang J, Zhang J, Ly H (2021). "Advances in Development and Application of Influenza Vaccines". Frontiers in Immunology. 12: 711997. doi:10.3389/fimmu.2021.711997. PMC 8313855 $2. PMID 34326849. 
  14. ^ National Advisory Committee on Immunization (NACI) (May 2018). NACI literature review on the comparative effectiveness and immunogenicity of subunit and split virus inactivated influenza vaccines in adults 65 years of age and older. Government of Canada. ISBN 9780660264387. Cat.: HP40-213/2018E-PDF; Pub.: 180039. 17 Mayıs 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Nisan 2023. 
  15. ^ "Toxoid vaccines - WHO Vaccine Safety Basics". vaccine-safety-training.org. World Health Organization (WHO). 4 Kasım 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Kasım 2021. 
  16. ^ a b c Clem AS (January 2011). "Fundamentals of vaccine immunology". Journal of Global Infectious Diseases. 3 (1): 73-78. doi:10.4103/0974-777X.77299. PMC 3068582 $2. PMID 21572612. 
  17. ^ Ghaffar A, Haqqi T. "Immunization". Immunology. The Board of Trustees of the University of South Carolina. 26 Şubat 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 10 Mart 2009. 
  18. ^ "Inactivated whole-cell (killed antigen) vaccines - WHO Vaccine Safety Basics". vaccine-safety-training.org. World Health Organization (WHO). 4 Kasım 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Kasım 2021. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Aşı (tıp)</span> belirli bir hastalığa karşı bağışıklık sağlamak için üretilen biyolojik ilaç

Aşı, belirli bir bulaşıcı veya malign hastalığa karşı aktif kazanılmış bağışıklık sağlayan biyolojik bir preparattır. Aşıların güvenliği ve etkinliği geniş çapta incelenmiş ve doğrulanmıştır. Bir aşı tipik olarak hastalığa neden olan bir mikroorganizmaya benzeyen bir ajan içerir ve genellikle mikrobun zayıflatılmış veya öldürülmüş formlarından, toksinlerinden veya yüzey proteinlerinden yapılır. Vücudun bağışıklık sistemi ajanı bir tehdit olarak tanır, yok eder ve bu sayede gelecekte karşılaşabileceği bu ajanla ilişkili mikroorganizmaları daha fazla tanır ve yok eder.

<span class="mw-page-title-main">DBT aşısı</span> difteri, boğmaca ve tetanosa karşı kullanılan aşı

DBT aşısı veya DTB aşısı, insanlarda görülen üç bulaşıcı hastalığa karşı bir karma aşı sınıfıdır: difteri, boğmaca ve tetanos. Aşı bileşenleri difteri ve tetanoz toksoitleri ile boğmacaya neden olan bakterinin öldürülmüş bütün hücrelerini veya boğmaca antijenlerini içerir. Toksoit terimi, bir bağışıklık yanıtı oluşturmak için hedef aldıkları patojen tarafından üretilen inaktive edilmiş bir toksini kullanan aşıları ifade eder. Bu şekilde, toksoit aşı, patojenin kendisine karşı hedeflenen bir aşıdan ziyade, patojen tarafından üretilen ve hastalığa neden olan toksine karşı hedeflenen bir bağışıklık yanıtı oluşturur. Tüm hücreler veya antijenler "DTwB" veya "DTaB" olarak gösterilecektir; burada küçük harf "w" tüm hücre inaktive boğmacayı ve küçük harf "a" "aselüler" anlamına gelir. Canlı zayıflatılmış aşılar gibi alternatif aşı türlerine kıyasla, DTB aşısı herhangi bir canlı patojen içermez, bunun yerine bir bağışıklık tepkisi oluşturmak için inaktive edilmiş toksoit kullanır; bu nedenle, hastalığa neden olduğu bilinen herhangi bir risk olmadığından, bağışıklığı zayıf olan popülasyonlarda kullanım riski yoktur. Sonuç olarak, DTB aşısı herkes için güvenli bir aşı olarak kabul edilir ve ilgili patojene özgü çok daha hedefli bir bağışıklık yanıtı oluşturur.

<span class="mw-page-title-main">Bağışıklık sistemi</span> canlılarda hastalıklara karşı koruma sağlayan biyolojik savunma sistemi bütünü

Bağışıklık sistemi, bir canlıdaki hastalıklara karşı koruma yapan, patojenleri ve tümör hücrelerini tanıyıp onları yok eden işleyişlerin toplamıdır. Sistem, canlı vücudunda geniş bir çeşitlilikte, virüslerden parazitik solucanlara, vücuda giren veya vücutla temasta bulunan her yabancı maddeye kadar tarama yapar ve onları, canlının sağlıklı vücut hücrelerinden ve dokularından ayırt eder. Bağışıklık sistemi, çok benzer özellikteki maddeleri bile birbirinden ayırabilir, örneğin; bir amino asidi farklı olan proteinleri bile birbirinden ayırabilecek özelliğe sahiptir. Bu ayrım, patojenlerin konak canlıdaki savunma sistemine rağmen enfeksiyon yapmaları için yeni yollar bulmalarına, bazı uyumlar sağlamalarına neden olacak kadar karmaşıktır. Bu mücadelede hayatta kalmak için patojenleri tanıyan ve onları etkisizleştiren bazı mekanizmalar gelişmiştir. Doğadaki tüm canlılar kendilerinden olmayan doku, hücre ve moleküllere karşı savunma sistemlerine sahiptirler. Hatta bakteriler gibi basit tek hücreli canlılarda da onları viral enfeksiyonlara karşı koruyan enzim sistemleri bulunur. Yüksek canlılardaysa çok daha karmaşık bir bağışıklık sistemi vardır. Omurgalılarda bağışıklık sistemi özel işlevlere sahip çok sayıda farklı hücre ve molekül içermektedir.

Bir alt ünite aşı veya alt birim aşısı patojenin antijenik olan veya koruyucu bir bağışıklık tepkisi ortaya çıkarmak için gerekli olan saflaştırılmış kısımlarını içeren bir aşıdır. Alt ünite aşı, hücre kültüründe veya rekombinant DNA ekspresyonunda dağılmış viral partiküllerden yapılabilir, bu durumda rekombinant alt ünite aşısıdır.

<span class="mw-page-title-main">Aşılama</span> hastalıklara karşı koruma için aşının uygulanması

Aşılama, bağışıklık sisteminin bir hastalığa karşı bağışıklık geliştirmesine yardımcı olmak için bir aşının uygulanmasıdır. Aşılar zayıflatılmış, canlı veya öldürülmüş halde bir mikroorganizma veya virüs ya da organizmadan alınan proteinler veya toksinler içerir. Vücudun adaptif bağışıklığını uyararak, bulaşıcı bir hastalıktan kaynaklanan hastalıkları önlemeye yardımcı olurlar. Bir nüfusun yeterince büyük bir yüzdesi aşılandığında, sürü bağışıklığı ortaya çıkar. Sürü bağışıklığı, bağışıklık sistemi baskılanmış - zayıflatılmış bir versiyonu bile kendilerine zarar vereceği için aşı olamayan - kişileri korur. Aşılamanın etkinliği geniş çapta incelenmiş ve doğrulanmıştır. Aşılama, bulaşıcı hastalıkların önlenmesinde en etkili yöntemdir; çiçek hastalığının dünya çapında ortadan kaldırılmasından ve çocuk felci ve tetanos gibi hastalıkların dünyanın büyük bir kısmından yok edilmesinden büyük ölçüde aşılama sayesinde sağlanan yaygın bağışıklık sorumludur. Bununla birlikte, Amerika'daki kızamık salgınları gibi bazı hastalıklarda, 2010'larda nispeten düşük aşılama oranları nedeniyle - kısmen aşı tereddütlerine atfedilen - artan vakalar görmüştür. Dünya Sağlık Örgütüne göre aşılama sayesinde yılda 3,5-5 milyon ölüm önlenmektedir.

<span class="mw-page-title-main">Kızamık aşısı</span> kızamık hastalığına karşı kullanılan aşı

Kızamık aşısı, kızamık hastalığına yakalanmaya karşı koruyan aşıdır. Tek bir dozdan sonra bağışıklık geliştirmeyenlerin neredeyse tamamı ikinci bir dozdan sonra bağışıklık geliştirir. Bir toplumda aşılanma oranı %92'den fazla olduğunda, kızamık salgınları tipik olarak artık meydana gelmez; ancak aşılanma oranı azalırsa tekrar ortaya çıkabilir. Aşının etkinliği uzun yıllar sürer. Zaman içinde daha az etkili olup olmadığı belirsizdir. Aşı, kızamığa maruz kaldıktan sonraki birkaç gün içinde yapılırsa da kızamığa karşı koruma sağlayabilir.

<span class="mw-page-title-main">RNA aşısı</span>

RNA aşısı veya mRNA aşısı, sentetik RNA moleküllerini insan hücrelerine transfer eden yeni bir aşı türüdür. Burada genetik malzemenin nakli (transfeksiyon) söz konusudur. RNA, hücrenin içine girdikten sonra mRNA olarak çalışır ve hücreyi yeniden programlayarak, hücrenin normalde patojen veya kanser hücreleri tarafından üretilen yabancı proteini üretmesini sağlar. Ardından bu protein molekülleri vücudun uyumlayıcı bağışıklık tepkisini harekete geçirir, böylece vücut, proteinin içindeki patojenleri ya da kanser hücrelerini yok etmeyi öğrenir. Kırılgan mRNA iplikçiklerini korumak ve bunların insan hücreleri tarafından emilmesini kolaylaştırmak için mRNA molekülleri bir ilaç taşıyıcı sistemiyle kaplanır.

Bu, profilaktik insan aşılarının geliştirilmesinin bir zaman çizelgesidir. Erken aşılar, geliştirme veya testin ilk yılına göre listelenebilir, ancak daha sonraki girişler genellikle aşının denemeleri tamamladığı ve piyasaya sürüldüğü yılı gösterir. Aşağıda listelenen hastalıklar için aşılar bulunmasına rağmen, dünya çapında sadece çiçek hastalığı ortadan kaldırılmıştır. Aşıyla önlenebilir diğer hastalıklar her yıl milyonlarca ölüme neden olmaya devam ediyor. Şu anda, çocuk felci ve kızamık, dünya çapında aktif şekilde ortadan kaldırılmaya çalışılan hastalıklardır.

<span class="mw-page-title-main">Grip aşısı</span> Influenza virüsüne karşı uygulanan tıbbi aşı

Grip aşısı, grip virüslerinin neden olduğu hastalıklardan korunmak için uygulanan bir aşıdır. Bu aşının yeni türleri yılda iki kez uygulanmaktadır. Çünkü grip virüsü çok hızlı değişim göstermektedir. Etkinliği yıldan yıla değişse de, gribe karşı en etkili yöntemdir. ABD Hastalık Kontrol ve Korunma Merkezleri, aşının hastalığı, doktora gitmeyi, hastaneye yatırılmayı ve ölümü azalttığını tahmin etmektedir. Grip olan aşılanmış işçiler ortalama yarım gün daha erken işe dönmektedir. Aşının 65 yaş üstü bireyler üzerindeki etkisi, kaliteli araştırma yapılmadığı için belirsizdir.

<span class="mw-page-title-main">Çocuk felci aşısı</span> çocuk felcini önlemek için kullanılan aşı

Çocuk felci aşıları, poliomyeliti önlemek için kullanılan aşılardır. İki türü kullanılmaktadır: enjeksiyon yoluyla verilen inaktive edilmiş bir poliovirüs (IPV) ve ağız yoluyla verilen zayıflatılmış bir poliovirüs (OPV). Dünya Sağlık Örgütü (DSÖ) tüm çocukların çocuk felcine karşı tam olarak aşılanmasını önermektedir. Bu iki aşı, çocuk felcini dünyanın büyük bir bölümünden ortadan kaldırmış ve her yıl bildirilen vaka sayısını 1988'de tahmini 350.000'den 2018'de 33'e düşürmüştür.

<span class="mw-page-title-main">Hatırlatma dozu</span> ilk uygulamadan sonra ekstra aşı uygulaması

Tıbbi terimlerle bir hatırlatma dozu, pekiştirme dozu, takviye dozu veya rapel bir aşının daha önceki (primer) bir dozdan sonra fazladan uygulanmasıdır. İlk bağışıklamadan sonra bir hatırlatma enjeksiyonu veya bir hatırlatma dozu, bağışıklık kazandırıcı antijene yeniden maruz kalmadır. Bu antijene karşı hafıza zamanla azaldıktan sonra, o antijene karşı bağışıklığı tekrar koruyucu seviyelere yükseltmesi amaçlanır. Örneğin, tetanoz aşısı hatırlatıcıları genellikle her 10 yılda bir önerilir; çünkü tetanoza özgü bellek hücreleri işlevlerini kaybeder veya apoptoza uğrar.

2009 domuz gribi pandemik aşıları, pandemik H1N1/09 virüsüne karşı koruma sağlamak için geliştirilmiş grip aşılarıdır. Bu aşılar ya inaktive (öldürülmüş) influenza virüsü ya da influenzaya neden olamayan zayıflatılmış canlı virüs içermektedir. Öldürülen virüs enjekte edilirken, canlı virüs burun spreyi olarak verildi. Her iki aşı türü de virüsü tavuk yumurtasında büyüterek üretildi. Kasım 2009'da teslim edilen yaklaşık üç milyar doz üretildi.

İmmünolojide adjuvan, bir aşıya karşı bağışıklık tepkisini artıran veya modüle eden bir maddedir. "Adjuvan" kelimesi Latince adiuvare kelimesinden gelmektedir ve yardım etmek veya yardımcı olmak anlamına gelmektedir. "İmmünolojik bir adjuvan, spesifik aşı antijenleri ile birlikte kullanıldığında antijene özgü bağışıklık tepkilerini hızlandıran, uzatan veya geliştiren herhangi bir madde olarak tanımlanır."

ATC kodu J07 Aşılar Dünya Sağlık Örgütü (DSÖ) tarafından ilaçların ve diğer tıbbi ürünlerin sınıflandırılması için geliştirilen bir alfanümerik kod sistemi olan Anatomik Terapötik Kimyasal Sınıflandırma Sistemi'nin bir terapötik alt grubudur. Alt grup J07 J Sistemik kullanım için antienfektifler anatomik grubunun bir parçasıdır.

Zayıflatılmış aşı, bir patojenin virülansını azaltarak, ancak yine de onu canlı tutarak oluşturulan bir aşıdır. Zayıflatmada, bulaşıcı ajanı alınırr ve zararsız veya daha az virülan hale gelecek şekilde değiştirilir. Bu aşılar, patojeni "öldürerek" üretilen aşıların tersidir.

<span class="mw-page-title-main">Aşı içerikleri</span> aşı üretimi için kullanılan bileşenler

Bir aşı dozu, çok azı aktif bileşen olan immünojen olan birçok bileşen içerir. Tek bir dozda sadece nanogram virüs partikülleri veya mikrogram bakteri polisakkaritleri bulunabilir. Bir aşı enjeksiyonu, ağızdan damla veya burun spreyi çoğunlukla sudur. Bağışıklık yanıtını güçlendirmek, güvenliği sağlamak veya depolamaya yardımcı olmak için diğer bileşenler eklenir ve üretim sürecinden arta kalan çok az miktarda malzeme bulunur. Çok nadiren, bu malzemeler kendilerine karşı çok hassas olan kişilerde alerjik reaksiyona neden olabilir.

Terapötik aşı, bir hastalık veya enfeksiyon meydana geldikten sonra uygulanan bir aşıdır. Terapötik aşı, bir enfeksiyonla savaşmak için hastanın bağışıklık sistemini harekete geçirerek çalışır. Terapötik bir aşı, profilaktik bir aşıdan farklıdır; profilaktik aşılar bireylere enfeksiyon veya hastalıktan kaçınmak için bir önlem olarak uygulanırken, terapötik aşılar birey hastalık veya enfeksiyondan zaten etkilendikten sonra uygulanır. Terapötik aşı, vücudu gelecekteki hastalıklara ve enfeksiyonlara karşı korumak için bağışıklık kazandırmak yerine vücuttaki mevcut bir enfeksiyonla savaşır.

Kanser aşısı, mevcut kanseri tedavi eden ya da kanser gelişimini önleyen bir aşıdır. Mevcut kanseri tedavi eden aşılar, terapötik kanser aşıları veya tümör antijen aşıları olarak bilinir. Aşıların bazıları "otolog" olup, hastadan alınan örneklerden hazırlanır ve o hastaya özgüdür.

<span class="mw-page-title-main">Konjuge aşı</span> aşı türü

Konjuge aşı, zayıf bir antijeni taşıyıcı olarak güçlü bir antijenle birleştiren ve böylece bağışıklık sisteminin zayıf antijene karşı daha güçlü bir yanıt vermesini sağlayan bir alt ünite aşı türüdür.

Modifiye vaccinia Ankara (MVA), vaccinia virüsünün zayıflatılmış bir türüdür. Aşı olarak kullanılmaktadır çiçek hastalığı ve maymun çiçeğine karşı, diğer çiçek virüslerinden elde edilen çiçek aşılarına göre daha az yan etkiye sahiptir.