İçeriğe atla

İletim hattı

Kayıpsız bir iletim hattında dalganın ilerlemesi. Siyah noktalar elektronları ve oklar da elektrik alanını göstermektedir.
En yaygın iletim hattı tiplerinden biri, koaksiyel kablo.

İletim hattı, elektronik ve haberleşme mühendisliğinde, akımın dalga karakteristiğinin hesaba katılmasını gerektirecek kadar yüksek frekanslarda, radyo frekansı, alternatif akımın iletimi için tasarlanmış özel kablo. İletim hatları radyo vericisi, alıcısı ve bunların anten bağlantıları, kablolu televizyon yayınlarının dağıtımı ve bilgisayar ağları gibi yerlerde kullanılır.

Açıklama

Bilinen elektrik kabloları, şebeke gerilimi gibi saniyede 100-120 kez yön değiştiren (saniyede 50-60 devir) düşük frekanslı AC işaretleri iletmek için yeterlidir. Ancak bu yapılar radyo frekansı bandı ya da daha yüksek frekanslar için kullanılamaz. Bunun nedeni, bir saniyede milyondan milyar keze kadar yön değiştiren bu işaretlerde, enerjinin radyo dalgaları şeklinde kablodan dışarı yayılması, dolayısıyla güç kaybı yaşanmasıdır. Ek olarak radyo frekansı akımları, kablodaki süreksizlik noktalarında, bağlantı yerleri gibi, yansıyarak kaynağa bir geri dönüşe yol açar. Engel oluşturan bu yansımalar, gücün hedefe aktarılmasını zorlaştırır. İletim hatlarında, elektromagnetik sinyalleri en az yansıma ve güç kaybı ile iletmek için belirli iletken boyutları ve yerleşimi kullanılır. İletim hatlarının çeşitleri arasında koaksiyel kablo, dielektrik levha, mikroşerit hat, fiberoptik ve dalga kılavuzları sayılabilir. İletim hatları işaret dalga boyunun kullanılan kablonun uzunluğuna yaklaştığı, frekansın bunu sağlayacak kadar yüksek olduğu, durumlarda kullanılmalıdır.

Tarihçe

İletim hatlarının matematiksel davranış analizi James Clerk Maxwell, Lord Kelvin ve Oliver Heaviside'ın çalışmalarında ortaya çıktı. 1855'te Lord Kelvin bir denizaltı kablosundaki akım için difüzyon modelini oluşturdu. Bu model, 1858 transatlantik denizaltı telgraf kablosunun düşük performansını doğru olarak öngörmüştü. Heaviside 1885 yılında kablolarda iletim analizi ve telgrafçılar denklemlerinin modern formunu anlatan ilk makaleleri yayımladı.[1]

Uygulanabilirlik

Birçok elektrik devresinde devre elemanlarını birleştiren kabloların uzunluğu dikkate alınmayabilir. Çünkü belli bir anda kablo üzerindeki gerilimin, kablonun her noktasında aynı olduğu varsayılır. Ancak gerilim değişim aralığı, işaretin kablonun sonuna ulaşma süresine yaklaştığı durumlarda kablonun uzunluğu anlamlı hale gelir; bu kablolar iletim hattı olarak değerlendirilmelidir. Bir başka ifadesiyle eğer iletilen sinyal, kablonun boyuna yakın veya daha kısa dalga boyuna sahip frekans bileşenleri barındırıyorsa hat uzunlukları dikkate alınmalıdır.

Genel kabule göre dalga boyunun 1/10'undan daha uzun bağlantılar iletim hattı olarak değerlendirilmelidir. Bu uzunluklarda hat üzerindeki faz gecikmesi ve yansımalar önemlidir. Bu unsurlar, iletim hattı teorisine uygun olarak tasarlanmamış sistemlerde istenmeyen davranışlara yol açabilecek etkilere sahiptir.

Dört uçlu model

İletim hattının farklı şematik gösterim şekilleri.

Analiz edilmek istenen bir iletim hattı iki kapılı olarak şöyle modellenebilir:

En basit durumda, devre lineer kabul edilir (yansıma olmadığında, bir kapıdaki kompleks gerilim, kapıya gelen akımla orantılıdır) ve kapıların yer değiştirebileceği varsayılır. Eğer iletim hattı tüm hat boyunca düzgün ise, hattın davranışı büyük oranda karakteristik empedans denilen ve Z0 ile gösterilen parametreyle açıklanır. Karakteristik empedans, hattın herhangi bir noktasındaki gerilimin akıma oranıdır. Z0 değeri genellikle, koaksiyel kablo için 50 ya da 75 ohm, çift dolanmış kablo için yaklaşık 100 ohm mertebesindedir.

Bir iletim hattından güç iletildiğinde, mümkün olduğunca çok gücün yüke aktarılması, başka bir ifadeyle kaynağa yansımanın en az olması istenir. Bu durum yük empedansı Z0 değerine eşit seçilerek gerçekleştirilebilir; eşitliğin sağlandığı hâl, iletim hattı "uygun yükle sonlandırılmış" şeklinde ifade edilir.

İletim hattına verilen gücün bir kısmı hattın direncinden dolayı kaybolur. Bu etki "ohmik" veya "rezistif" kayıp (ohmik ısınma) olarak adlandırılır. Yüksek frekanslarda buna "dielektrik kayıp" olarak isimlendirilen başka bir etki daha eklenir. Dielektrik kayıp hattaki yalıtkan malzemenin alternatif elektrik alandan enerji alması ve bunu ısıya çevirmesiyle oluşur. İletim hattı seri birer direnç (R) ve endüktans (L) ve paralel birer kapasite (C) ve iletkenlik (G) ile modellenir.

Bir iletim hattındaki toplam güç kaybı, çoğu yerde metre başına desibel (dB/m) olarak hesaplanır ve işaretin frekansına bağlı bir büyüklüktür. Üreticiler belli frekans aralığındaki kaybı dB/m olarak gösteren tabloları ürünle birlikte vermektedir. Hattaki 3 dB'lik kayıp yaklaşık olarak gücün yarılanması anlamına gelir.

Telgrafçılar denklemleri

Telegrafçılar denklemleri (ya da telgraf denklemleri), iletim hattındaki gerilim ve akımı tanımlayan bir lineer diferansiyel denklem çiftidir. Maxwell denklemlerine dayanan bağıntılar, iletim hattı modelini oluşturan Oliver Heaviside tarafından bulunmuştur.

Bir iletim hattının birim parçasına ait şematik gösterim.

İletim hattı modeli, iletim hattını her biri hattın diferansiyel uzunluklu bir parçasını temsil eden sonsuz iki kapılılar serisi olarak şematize eder. Model şu elemanlardan oluşur:

  • İletkenlerin dağılmış direncini simgeleyen seri bir direnç elemanı (birim uzunluk başına ohm boyutunda).
  • İletkenler etrafındaki dağılmış endüktansı simgeleyen seri bir endüktans (birim uzunluk başına henry boyutunda).
  • İki iletken arasındaki kapasiteyi simgeleyen bir kondansatör (birim uzunluk başına farad boyutunda).
  • İki iletkeni ayıran dielektrik malzemenin iletkenliğini simgeleyen iletkenlik elemanı (birim uzuluk başında siemens boyutunda).

Model, şekilde gösterilen birim yapının sonsuz tanesinin yan yana gelmesiyle oluştuğundan, eleman boyutları birim uzunluk başına tanımlanmıştır; bu bakımdan şematik yanlış anlaşılmalara yol açabilir. Ayrıca , , ve frekansa bağlı fonksiyonlar da olabilir. Alternatif olarak , , ve notasyonu tercih edilerek, büyüklüklerin uzunluğa göre türev olduğu vurgulanmaya çalışılır. Bu değerler bazı kaynaklarda, kendilerinden türetilen propagasyon sabiti, sönüm katsayısı ve faz sabiti gibi ikincil büyüklüklerden ayırt edilebilmesi için, birincil hat sabitleri diye nitelenir.

Hat gerilimi ve akımı frekans domeninde şöyle ifade edilebilir:

ve elemanları ihmal edilebilecek kadar küçük ise, iletim hattı kayıpsız bir yapı olarak düşünülür. Bu varsayımla model sadece ile 'ye bağlı hale gelir. Kayıpsız bir iletim hattı için ikinci derece sürekli hal Telgrafçılar denklemleri şöyle yazılır:

Bunlar, ileri ve geri yönde eşit yayılma hızına sahip düzlem dalgalar çözümlü dalga denklemleridir. Eşitlikler fiziksel olarak, elektromanyetik dalgalar iletim hatları boyunca ilerlerken, ters yönde bir yansıyan bileşenin de hatta bulunduğunu anlamına gelir. Bu bağıntılar iletim hattı teorisinin temelini oluşturur.

Eğer ve ihmal edilmezse Telgrafçılar denklemleri şu şekli alır:

burada

ve karakteristik empedans

ile 'nin çözümleri:

ve sabitleri sınır koşulları ile bulunmalıdır. 'da başlayan ve pozitif yönünde ilerleyen bir gerilimi için, belirli bir noktasına iletilen gerilim , 'nin Fourier Dönüşümünün, , hesaplanması, ardından tüm frekans bileşenlerinin ile sönümlenmesi, fazın kadar ötelenmesi ve son olarak ters Fourier Dönüşümü uygulanması ile hesaplanabilir. 'nın reel ve imajiner bileşenleri şöyledir:

burada atan2 iki değişkenli tanjant tersidir; a ile b şöyle yazılır:

Küçük kayıp ve yüksek frekanslarda şu yaklaşıklıklar elde edilir:

Fazdaki kadar değişmenin zamanda kadar ötelenme anlamına geldiği dikkate alındığında, şu şekilde ifade edilir:

Kayıpsız hattın giriş empedansı

Bir iletim hattının karakteristik empedansı tek bir gerilim dalgasının, bağlı akım dalgasına oranıdır. İletim hatlarının çoğunda yansıyan dalga da olduğundan, hatta ölçülen empedans genellikle karakteristik empedansa eşit değildir.

Kayıpsız iletim hatları için, yük empedansından kadar uzak konumda ölçülecek empedans şöyle yazılır:

burada dalga sayısıdır.

hesaplanırken, iletim hattındaki dalga boyunun boşluktakinden farklı olması muhtemeldir; bu yüzden iletim hattının yapıldığı malzemede dalga ilerleme hızı dikkate alınmalıdır.

Özel durumlar

Yarım dalga boyu

n bir tam sayı olmak üzere durumunda (hat boyu, dalga boyunun yarısının tam katı), giriş empedansı eşitliği 'in tüm değerleri için

halini alır. Bu açıklama , yani hat boyunun dalga boyu karşısında ihmal edilebildiği durum, için de geçerlidir. Fiziksel açıdan bakıldığında iletim hattının bu hallerde ihmal edilebileceği (normal bir kablo olarak değerlendirileceği) görülür.

Çeyrek dalga boyu

Hat uzunluğunun çeyrek dalga boyuna eşit veya tek katları olduğu durumlarda, giriş empedansı denklemi şu şekli alır:

Uyumlu yük

Bir başka özel durum, yükün hattın karakteristik empedansına eşit olduğu (bir başka ifadeyle hattın uygun yükle sonlandırıldığı) haldir. Burada tüm ve değerleri için aşağıdaki eşitlik yazılır.

Kısa devre

Yükün kısa devre edildiği ( olduğu) durumda giriş empedansı tamamen sanal terimden oluşur ve bu terim konum ile dalga boyunun (dolayısıyla frekansın) bir periyodik fonksiyonudur:

Açık devre

Yükün açık devre olduğu () durumda, giriş empedansı yine sanal ve periyodiktir.

Basamaklı iletim hattı

Üç parçadan oluşan basit bir basamaklı hat.

Basamaklı iletim hattı yapısı empedans uyumlama uygulamalarında kullanılır. Hat, birbirine seri bağlanmış Z0,i karakteristik empedanslı hat parçaları şeklinde düşünülebilir. Giriş empedansı şu denklem her basamak için tekrar hesaplanarak bulunabilir:

burada i. parçadaki dalga sayısı, li parçanın uzunluğu ve Zi ise o bölüme ait yük olan, hat sonundan görülen empedanstır.

Kaynakça

  1. ^ Ernst Weber and Frederik Nebeker, The Evolution of Electrical Engineering, IEEE Press, Piscataway, New Jersey USA, 1994 ISBN 0-7803-1066-7
  • Steinmetz, Charles Proteus (27 Ağustos 1898), "The Natural Period of a Transmission Line and the Frequency of lightning Discharge Therefrom", The Electrical World, ss. 203-205 
  • Grant, I. S.; Phillips, W. R., Electromagnetism (2. bas.), John Wiley, ISBN 0-471-92712-0 
  • Ulaby, F. T., Fundamentals of Applied Electromagnetics (2004 media bas.), Prentice Hall, ISBN 0-13-185089-X 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Madde dalgaları veya de Broglie dalgaları, maddenin dalga-parçacık ikiliğini yansıtan kavramdır. Kuram 1924'te, Louis de Broglie tarafından doktora tezinde önerilmiştir. De Broglie denklemleri dalga boyunun parçacığın momentumuyla ters orantılı olduğunu gösterir ve ayrıca de Broglie dalga boyu diye isimlendirilir. Ayrıca madde dalgalarının tekrarsıklığı, de Broglie tarafından türetildiği gibi, parçacığın toplam enerjisi E'ye – kinetik enerjisinin ve potansiyel enerjisinin toplamı – doğru orantılıdır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Alternatif akım</span>

Alternatif akım, genliği ve yönü periyodik olarak değişen elektriksel akımdır. En çok kullanılan dalga türü sinüs dalgasıdır. Farklı uygulamalarda üçgen ve kare gibi değişik dalga biçimleri de kullanılmaktadır. Bütün dalgalar birbirlerine elektronik devreler aracılığı ile çevrilebilir. Devrede kondansatör, diyotlar, röleler ile bu çevrim yapılabilir.

Yansıma Elektronikte radyo frekans devrelerinde ölçülen bir büyüklüktür.

Admittans elektrik mühendisliğinde karmaşık iletkenlik anlamına gelir. Admittans ile empedans çarpımı 1 dir. Admittans Y ile gösterilir. Birimi MKS sisteminde siemens (S)'dir. Kimi eski kitaplarda S yerine mho birimi de kullanılır.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

<span class="mw-page-title-main">Koaksiyel kablo</span> televizyon ve uydu iletişim sistemlerinde kullanılan kablo türü

Koaksiyel kablo radyo frekansta kullanılan bir kablo türüdür. Bu kablonun kesit alanı iç içe dört maddeden meydana gelir. En içte canlı hat, yani sinyali taşıyan hat vardır. Bu uç dielektrik sabiti yüksek bir yalıtkan ile çevrelenmiştir. Yalıtkanın çevresinde iletkenlerden oluşan bir örgü vardır. Bu örgü topraklanmıştır. En dışta ise koruyucu kılıf yer alır. Bu yapı koaksiyel kabloların kendi kalınlığındaki diğer kablolara göre daha elastiki olmalarını sağlar.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

Bir elektromanyetik dalganın yayılma sabiti, verilen yönde yayılan dalganın genliğindeki değişimin bir ölçüsüdür. Ölçülen nicelik bir elektrik devresindeki gerilim veya akım olabileceği gibi elektrik alan veya akım yoğunluğu gibi bir alan vektörü de olabilir. Yayılma sabiti metre başına değişimin bir ölçüsü olmasının yanı sıra boyutsuz bir niceliktir.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

<span class="mw-page-title-main">Karakteristik empedans</span> bir düzgün iletim hattında, yansımasız durumda, hat üzerinde ilerleyen gerilim dalgası ile akım dalgasının genlikleri oranı

Karakteristik empedans, bir düzgün iletim hattında, yansımasız durumda, hat üzerinde ilerleyen gerilim dalgası ile akım dalgasının genlikleri oranı. Genellikle ile gösterilir. SI'da empedans birimi ohmdur. Kayıpsız iletim hatlarında karakteristik empedans sadece reel kısımdan oluşur; bir başka deyişle imajiner kısım içermez. Karakteristik empedansın dirence benzediği bu durumda, hatta bağlı kaynaktan gelen güç, sonsuz uzunluktaki hattın diğer ucuna iletilir ama iletim sırasında hatta herhangi bir güç harcanması söz konusu değildir. Karakteristik empedansına eşit büyüklükte bir yükle sonlandırılmış, sonlu uzunluktaki bir iletim hattı sonsuz uzunluktaymış gibi davranır.

<span class="mw-page-title-main">Vektör alanı</span> oklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir.

Yöney alan, Öklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir. Düzlemdeki bir yöney alanı, her biri düzlemdeki bir noktaya ilişik, yönü ve büyüklüğü olan oklar topluluğu olarak düşünülebilir.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

<span class="mw-page-title-main">Smith abağı</span> Grafik türü

Smith abağı veya Smith diyagramı, radyo ve mikrodalga frekanslarındaki iletim hatlarının tasarımı ve empedans eşlemesinde kullanılan bir grafiktir. Elektrik-elektronik ve haberleşme mühendisleri tarafından kullanılan bu abak Phillip H. Smith (1905–1987) tarafından icat edilmiştir. Smith abağı aynı anda empedans, admitans, yansıma ile saçılma katsayıları, kazanç konturu ve stabilite gibi çok sayıda parametreyi aynı anda gösterebilmektedir; bu yüksek frekans devreleri dışında mekanik titreşim analizinde de kullanılmasını sağlamıştır. Smith abağı genelde birim yarıçap içinde kullanılır; buna karşın abağın geri kalanı da elektronik osilatör ve stabilite analizinde kullanılmaktadır.

<span class="mw-page-title-main">Dağılma</span>

Elektromanyetizmada ve optikte dağılma ya da dispersiyon, elektromanyetik dalganın ilerlediği ortamdaki faz hızının frekansına bağlı olması durumudur. Kırılma indisinin frekansa bağlılığı olarak da tanımlanabilmektedir. Bu özelliğe sahip ortamlar dağıtıcı ortamlar olarak bilinir. Faz hızı ile grup hızının eşit olması durumunda dağılma sıfırlanır; grup hızının daha büyük olması anormal dağılma olarak bilinir. İletim hatları ve optik fiberler gibi dalga kılavuzlarında dalga yayılımını büyük ölçüde etkileyen dağılma, dalga denkleminin geçerliği olduğu diğer sistemlerde de gözlemlenebilmektedir.