İçeriğe atla

İkiz asallar

Çözülememiş matematik problemi:
Sonsuz sayıda ikiz asal sayı mı vardır?
Şekil 18. x = 2 ila 64 için elde edilen verileri kullanan Prime-Composite sonlu ölçekli matematiksel (grafiksel) manzara. Alttaki grafik, giderek daha büyük negatif tam sayılar kullanan "Boyutları" sembolik olarak temsil eder.

İkiz asallar, aralarındaki fark 2 olan asal sayılar. Örneğin 3-5, 5-7, 11-13 ikiz asallardır. 2-3 çifti hariç iki asal sayı arasındaki fark da zaten en az 2 olabilir.

İkiz asalların sonsuz tane olmasına ilişkin soru, sayılar kuramının yıllardır çözülememiş en büyük problemlerinden birisidir ve "ikiz asallar sanısı ( varsayımı, kestirimi) olarak adlandırılır. "Hardy-Littlewood sanısı" ikiz asalların dağılımı üzerine "asal sayılar teoremi" ne benzer bir varsayımda bulunur.

Viggo Brun, ünlü " eleme metoduyla" bir x sayısından küçük ikiz asal sayıların sayısının, x/(log)2 den küçük olduğunu göstermiştir. Bu sonuç da bütün ikiz asal sayı çiftler toplamının yakınsak olduğunu göstermektedir (bakınız Brun sabiti). Bu tüm asal sayı çiftlerinin toplamının ıraksadığına terstir (p ve p' asal sayılar ve k bir doğal sayı olmak üzere p-p'=2k, bu genellemeden k=1 için ikiz asallar varsayımına gidilir; bahsi geçen tüm asal sayı çiftlerin toplamı k değişken olmak üzere p ve p'lerin toplamıdır). Brun ayrıca her çift sayının, en fazla 9 tane asal çarpanı olan iki tane sayının farkı olarak sonsuz biçimde ifade edilebileceğini göstermiştir. Chen Jingrun'un ünlü teoremi göstermektedir ki herhangi bir m çift sayısı için m ile aralarında en fazla 2 tane asal çarpanı olan bir sayı kadar fark olan asal sayılardan sonsuz tane vardır.

3'ten büyük her ikiz asal sayı çifti, bazı n doğal sayıları için, (6n-1, 6n +1) şeklinde ifade edilir.

Öyle ki n, 1'e eşit değildir ve 0, 2, 3, 5, 7 ile sonlanmak zorundadır.

m ve m+2 sayı çifti ancak ve ancak

durumunda bir ikiz asal sayı çiftidir.

2005 yılına gelindiğinde bilinen en büyük ikiz asal sayı çifti 16869987339975 · 2171960 ± 1 dir. Macar Zoltán Járai, Gabor Farkas, Timea Csajbok, Janos Kasza ve Antal Járai tarafından 2005 yılında bulunmuş olup 51779 haneli sayılardır.

4,35 · 1015 e değin yapılan tüm asal sayı çiflerin deneysel analizi göstermektedir ki x den az çift sayısı x·f(x)/(log x)2 dir. Burada f(x) küçük değerli x ler için yaklaşık 1,7 dir ve x sonsuza giderken yaklaşık 1,3 e kadar azalır. f(x) 'in limit değeri "ikiz asal sabiti" ne eşit olduğu varsayılmaktadır.

Bu varsayım ikiz asallar sanısını gerektirmektedir ki hâlâ çözümsüzdür.Türk bilim adamlarından Cem Yalçın Yıldırım'ın da aralarında bulunduğu bir grup bilim insanı bu konu ile ilgili önemli araştırma çalışmaları yapmaktadırlar.

İlk 35 ikiz asal çifti

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619), (641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Goldbach hipotezi</span>

Goldbach hipotezi ya da Goldbach sayısı, sayılar teorisindeki ve tüm matematikteki en eski ve en çok bilinen çözülmemiş problemlerden biridir. Hipotezde:

2'den büyük her çift tam sayı, iki asalın toplamı olarak ifade edilebilir.

Matematikte reel sayılar kümesi, Fransızca réel “gerçek” den gelmektedir. Oranlı sayılar kümesinin evrim sürecinden elde edilen bir varsayım kombinasyonudur. Reel sayılar kümesi sembolüyle gösterilir.

<span class="mw-page-title-main">Aritmetiğin temel teoremi</span>

Matematik'te aritmetiğin temel teoremi, aynı zamanda benzersiz çarpanlara ayırma teoremi ve asal çarpanlara ayırma teoremi olarak da adlandırılır, şunu belirtir: 1'den büyük her tamsayı, benzersiz bir şekilde asal sayıların üslerinin çarpımı olarak gösterilebilir.

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

Hamming sayıları ilk kez Richard Hamming tarafından tanımlanmış bir sayı dizisidir. Bunlar pozitif tam sayılar olup çarpanları sadece 2, 3 ve 5'in kuvvetleridir. İlk birkaç Hamming sayısı şunlardır: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, ... Hamming sayıları k-düzgün sayıları denen sayılar kategorisinin bir özel halidir. Bu tür sayıların kdan büyük asal çarpanı yoktur. Dolayısı ile Hamming sayıları da 5-düzgün sayılardır. Hamming sayılarını artan sırada hesaplama algoritmaları Edsger Dijkstra tarafından yaygınlaştırılmıştır.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

abc sanısı veya abc konjektürü sayılar teorisindeki bir sanı yani konjektürdür. 1985'te Joseph Oesterlé ve David Masser tarafından ortaya atılmıştır. Biri diğer ikisinin toplamı şeklinde ifade edilen üç tam sayının özellikleri üzerine kurulmuştur. Problemi çözmek için açık bir strateji bulunmadığı halde, sanı bazı ilginç sonuçları sayesinde tanınmıştır.

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

Sayı teorisinde, asal çarpanlara ayırma bir bileşik sayının, çarpıldıklarında yine aynı sayıyı verecek şekilde, bir ve kendisi dışındaki bölenlerine ayrılmasıdır.

Öklid'in teoremi, sayılar teorisinde temel bir ifade olup sonsuz sayıda asal sayı olduğunu ileri sürer. Teoremin iyi bilinen farklı ispatları bulunmaktadır.

Asal sayıların listesi ile verilir. M.Ö 3. yüzyıldan beri asal sayıların sonsuz sayıda olduğu bilinmektedir.

Rönesans'tan bu yana, her yüzyılda, bir önceki göre daha fazla matematik problemi çözülmüştür. Yine de birçok büyük ve küçük problem çözüme kavuşturulamamıştır. Uzun süredir var olan bir sorunun çözümü için genellikle ödüller verilir ve çözülmemiş sorunların listeleri büyük önem kazanır. Çözülmemiş problemler, aralarında fizik, bilgisayar bilimi, cebir, matematiksel analiz, Kombinatorik, cebirsel geometri, ayrık geometri, Öklid geometrisi, katma ve cebirsel geometri teorileri, çizge teorisi, grup kuramı, modeller kuramı, sayılar teorisi, kümeler kuramı, Ramsey Kuramı, dinamik sistemler, Kısmi diferansiyel denklemler gibi birçok alanda varlığını sürdürmektedir.

<span class="mw-page-title-main">Bézout teoremi</span> aciklama

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

666 veya altı yüz altmış altı, 665'ten sonra ve 667'den önce gelen bir doğal sayıdır.

Bu, Wikipedia'da yer alan sayı teorisi konularıyla ilgili sayfaların bir listesidir.

<span class="mw-page-title-main">Viggo Brun</span>

Viggo Brun Norveçli bir profesör, matematikçi ve sayı teorisyeniydi.

<span class="mw-page-title-main">Asal sayı teoremi</span> sayılar teorisinde bir teorem

Asal sayı teoremi (PNT), asal sayıların pozitif tam sayılar arasındaki asimptotik dağılımını tanımlar. Bunun meydana gelme hızını tam olarak ölçerek, asal sayıların büyüdükçe daha az yaygın hale geldiği şeklindeki sezgisel fikri resmîleştirir. Teorem, 1896'da Jacques Hadamard ve Charles Jean de la Vallée Poussin tarafından bağımsız olarak Bernhard Riemann'ın ortaya attığı fikirler kullanılarak kanıtlandı.

Bu bir sayılar teorisi zaman çizelgesidir.