İçeriğe atla

İşlem

Genel matematik işlemleri simgeleri:
- artı (toplama)
- eksi (çıkarma)
- çarpı (çarpma)
- bölü (bölme)

İşlem, bir işi sonuçlandırmak için gerçekleştirilen çalışmalar bütünü; muamele. Örnek: "Gerekli işlem gerçekleştirildikten sonra paranızı çekebilirsiniz".

Matematikte işlem, temelde toplama ve çarpma cetvelleriyle bir toplamı, bir farkı, bir çarpımı ya da bir bölümü hesaplamaya yarayan teknikler bütünüdür. Matematikte genellikle ikili işlem, bazen de birli işlem söz konusudur.

Eğer X bir kümeyse ve bir doğal sayıysa X üzerine işlem kümesinden 'e giden bir fonksiyondur. Örneğin , gerçel sayilar kümesi R üzerine bir işlemdir.

İşlemleri göstermekte kullanılan artı (), eksi (), çarpı (), bölü () gibi sembollere işleç adı verilir.[1]

Ayrıca bakınız

Özel durumları

İlgili konular

Kaynakça

  1. ^ "İşleç". TDK. Türk Dil Kurumu. 3 Ocak 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 2 Ocak 2018. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Grup teorisi</span> simetrileri inceleyen matematik dalı

Grup teorisi veya Grup kuramı, simetrileri inceleyen matematik dalıdır. Simetri kuramı olarak da adlandırılabilir. Bir nesnenin simetrileri ile kast edilen, nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümlerdir. Her nesnenin en az bir simetrisi vardır: hiçbir şey yapmadan olduğu gibi bırakma dönüşümü. Bahsettiğimiz dönüşümlerin tersleri de vardır ve aradığımız özellikleri sağlarlar. Son olarak da dönüşümlerin art arda yapılması, birleşimli bir işlemdir. Bu üç koşula sırasıyla birim elemana sahip olma, elemenların tersi olma ve grup işleminin birleşmeli olması denir. Bu kavramların matematikte soyutlanması, üzerinde tersinebilir ve bileşme özelliğine sahip ikili bir işlemin tanımlı olduğu kümeler ile yapılır. Daha detaylı açıklamak gerekirse, grup nesnesi bir küme G ve onun üzerinde tanımlı bir işleminden oluşur. Bu operasyonun aşağıdaki şartları sağlaması gereklidir:

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Matematiksel mantık, biçimsel mantığın matematiğe uygulanmasıyla ilgilenen bir matematik dalıdır. Metamatematik, matematiğin temelleri ve kuramsal bilgisayar bilimi alanlarıyla yakınlık gösterir. Matematiksel mantığın temel konuları biçimsel sistemlerin ifade gücünün ve biçimsel ispat sistemlerinin tümdengelim gücünün belirlenmesidir.

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

Fonksiyon, matematikte değişken sayıları girdi olarak kabul edip bunlardan bir çıktı sayısı oluşmasını sağlayan kurallardır. Fonksiyon, 17. yüzyılda matematiğin kavramlarından biri olmuştur. Fizik, mühendislik, mimarlık ve birçok alanda kullanılmaktadır. Galile, Kepler ve Newton hareketlerin araştırılmasında, zaman ve mesafe arasındaki durumu incelemek için fonksiyonlardan faydalanmıştır. Dört işlemden sonra gelen bir işlem türüdür.

<span class="mw-page-title-main">Soyut cebir</span> Matematiğin bir alanı

Soyut cebir veya soyut matematik, matematiğin bir alanı olup, cebirsel yapılar üzerinde çalışır. Cebirsel yapılar, elemanları üzerinde belirli işlemlerin uygulandığı kümelerdir ve gruplar, halkalar, alanlar, modüller, vektör uzayları, kafesler ve alan üzerindeki cebirler içerir. Soyut cebir terimi, 20. yüzyılın başlarında temel cebirden ayırmak amacıyla türetilmiştir. Soyut cebir ileri matematik için temel hale geldikçe basitçe "cebir" olarak adlandırılırken, "soyut cebir" terimi pedagoji dışında nadiren kullanılır.

<span class="mw-page-title-main">Polinom</span> değişkenlerin çarpımlarının toplamı, değişkenlerin gücü ve katsayılar

Matematikte, bir polinom belirli sayıda bağımsız değişken ve sabit sayıdan oluşan bir ifadedir. Polinom kendi içinde toplama, çıkarma, çarpma ve negatif olmayan sayının üssünü alma işlemlerini kullanır. Örnek olarak tek bilinmeyenli bir polinom olan x2 − 4x + 7, ikinci dereceden oluşan bir polinomdur. Diğer bir örnek olarak, x2 − 4/x + 7x3/2 bir polinom değildir, çünkü polinomlarda terimlerin derecelerinin doğal sayı olma zorunluluğu vardır 2. terimde x′i ele alan bir bölme işlemi x'in derecesini negatif yapmaktadır ve 3. terim doğal sayı olmayan bir derece içermektedir (3/2).

<span class="mw-page-title-main">Halka</span>

Halka, matematikte cebirin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalar diğer bir temel yapı olan grupların üzerine inşa edilir. Her halka, aynı zamanda değişmeli bir gruptur, ama bir halkadan daha fazla özelliği sağlaması istenir. Örneğin halkada grup işlemine ek olarak ikinci bir işlem daha vardır. Halkalara örnek olarak tam sayılar, modülo n sayılar, polinomlar ya da karmaşık sayılar verilebilir.

Grup, soyut cebirin en temel matematiksel yapısıdır. Grup, ayrıca bir ikili işlemin tanımlı olduğu bir kümedir. Bir grubun grup olabilmesi için aynı zamanda bu işlemin birleşmeli, birim elemanlı ve ters elemanlı olması gerekir. Soyut cebirin halka, cisim, modül gibi diğer yapılarının temelini oluşturur.

Eğer bir kümeyse, kümesinden kümesine giden bir fonksiyona kümesi üzerine ikili işlem denir. İkili işlemi olarak gösterirsek, yerine genellikle , , ya da daha yaygın olarak yazmak bir gelenek halini almıştır. Burada önemli olan, her için, işlemin sonucu olan elemanının yine kümesinde olmasıdır, yoksa ikili bir işlemden söz edemeyiz. Örneğin, ise, işlemi bu küme üzerinde ikili bir işlem değildir. Örneğin, bir doğal sayı değildir. Öte yandan olarak tanımlanan işlem doğal sayılar kümesi üzerine ikili bir işlemdir.

Bileşke fonksiyon, matematikte bir işlevdir.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

<span class="mw-page-title-main">Küme</span> matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir.

Küme, matematikte farklı nesnelerin topluluğu veya yığını olarak tanımlanmaktadır. Bu tanımdaki "nesne" soyut ya da somut bir şeydir. Fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade etmektedir. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıkça ifade edilmektedir. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif etmektedir. O halde, matematikte "İyi tanımlı nesnelerin topluluğuna küme denir." biçiminde bir tanımlama yapılmaktadır.

<span class="mw-page-title-main">Harmonik fonksiyon</span>

Matematiğin matematiksel fizik alanında ve rassal süreçler teorisinde bir harmonik fonksiyon, Rn'nin U gibi açık bir kümesi üzerinde f : UR şeklinde tanımlı, Laplace denklemini, yani

<span class="mw-page-title-main">Tanım kümesi</span> işlevin tanımlandığı "giriş" veya bağımsız değişken değerleri kümesi

Matematikte verilmiş bir fonksiyonun tanım kümesi, fonksiyonun tanımlı olduğu "girdi" değerlerinin oluşturduğu kümedir. Örneğin, kosinüsün tanım kümesi gerçel sayılar olurken karekök fonksiyonunun tanım kümesi 0 ve 0'dan büyük sayıların oluşturduğu negatif olmayan gerçel sayılar kümesidir. Fonksiyonun xy Kartezyen koordinat sistemindeki temsilinde, tanım kümesi x-ekseni (apsis) ile temsil edilir.

<span class="mw-page-title-main">Değer kümesi</span> matematiksel bir fonksiyonun hedef kümesi

Matematikte verilmiş bir fonksiyonun değer kümesi, fonksiyonun tanımlı olduğu "çıkış" değerlerinin oluşturduğu kümedir. Örneğin, kosinüsün değer kümesi [-1; 1] gerçel sayılar aralığıyken gerçel sayılarda karekök fonksiyonunun değer kümesi bütün gerçel sayılardır. Fonksiyonun xy Kartezyen koordinat sistemindeki temsilinde değer kümesi y-ekseniyle (ordinat) temsil edilir.

<span class="mw-page-title-main">Kesir</span>

Kesir, bir birimin bölündüğü parçalardan birinin veya birkaçının bütüne oranını ifade eden sayı. Kesir kavramı, ondalık sayılardan ve yüzdelerden ayırmak amacıyla sıklıkla sadece "bayağı kesirleri" tanımlamak için kullanılır.

<span class="mw-page-title-main">Birleşme özelliği (ikili işlemler)</span>

Matematikte birleşmeli özellik, bir küme üzerine tanımlanmış ikili işlemlerin ayırt edici özelliklerinden biridir. Bu özelliği sağlayan ikili işlemlere birleşmeli işlem denir. Açık olarak bu özellik, (xy)z = x(yz) demektedir, yani üç elemanı "çarparken" işlem sırasının önemli olmadığını söylemektedir, bir başka deyişle birleşmeli özellikte işlem yaparken paranteze gerek olmadığını söylemektedir. Örneğin tam sayılar kümesi Z üzerine tanımlanmış olan toplama işlemi birleşmeli bir işlemdir ancak çıkarma işlemi birleşmeli değildir, çünkü eşitliği her için sağlanmasına karşın, eşitliği için sağlanmaz.

Matematikte, tek fonksiyon ve çift fonksiyon, aralarında simetri ilişki bulunan ve toplamaya göre tersleri olan fonksiyonlardır. Matematiksel analizin birçok alanında, özellikle kuvvet serisi ve Fourier serisinde sıkça kullanılır. Kuvvet fonksiyonunun eş kuvvetlerine göre adlandırılır ve şu şartı şağlar: Eğer n çift tam sayı ise, f(x) = xn, çift fonksiyon; n tek tam sayı ise, fonksiyon tek fonksiyondur.