İçeriğe atla

Üstel fonksiyon

Üstel
Reel eksenin bir kısmı boyunca doğal üstel fonksiyon
Reel eksenin bir kısmı boyunca doğal üstel fonksiyon
Genel bilgiler
Genel tanım
Tanım kümesi, değer kümesi ve görüntü kümesi
Tanım kümesi
Görüntü kümesi
Belirli değerler
Sıfırda değeri1
1 nok. değerie
Belirli özellikler
 · Wn(−1) for
İlgili fonksiyonlar
Çarpımsal ters
TersDoğal logaritma, Karmaşık logaritma
Türev
Terstürev
Seri tanımı
Taylor serisi

Üstel işlev veya üstel fonksiyon, matematikte kullanılan işlevlerden biridir. Genel tanımı ax şeklindedir, burada taban a artı değere sahip bir sabittir ve üst x değişkendir. Çoğunlukla

sembolüyle gösterilir. Kimi kitaplarda ise;
sembolü kullanılır.

Burada e, yaklaşık değeri 2,718 olan Euler sayısını temsil eder, x ise gerçel ya da karmaşık bir değişkendir. Kuvvet fonksiyonunun tersine, değişken tabanda değil üstte olduğu için bu fonksiyona üstel denir.[1]

Bazı kaynaklarda üstel fonksiyon, herhangi bir pozitif a tabanı için ax olarak tanımlanır. Bu maddede e tabanlı üstel fonksiyon anlatılacaktır. (Farklı tabanlı üstel fonksiyonlar ax = ex·ln a bağlantısı sayesinde e tabanlı üstel fonksiyona dönüştürülebilirler, bu yüzden de e tabanlı fonksiyonu incelemek yeterlidir.)

Tanım

Gerçel değişkenli üstel fonksiyon için birbirine eşdeğer olan birkaç tanım verilebilir. Bunlardan bazıları şöyledir:

  • Sonsuz seri tanımı:
  • Türevsel denklem tanımı:
  ve    eşitliklerini sağlayan    fonksiyonuna    denir.
  eşitliğini sağlayan pozitif    sayısına    denir.

Bu tanımların geçerli ve eşdeğer oldukları pek çok matematiksel analiz kaynağında gösterilir. İlk üç tanım, hiçbir değişiklik yapmadan, karmaşık değişkenli üstel fonksiyon için de verilebilir.

Özellikler

Yukarıdaki tanımlardan herhangi birinden yola çıkılarak şu özellikler kanıtlanabilir:

Ayrıca bakınız

Kaynakça

  1. ^ Genel Matematik. 5. baskı. Küçük, Yalçın., Özer, Orhan. Eskişehir: Anadolu Üniversitesi. 2005. s. 166. ISBN 978-975-06-0031-9. OCLC 436688599. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Kısmi türev</span>

Kısmi türev çok değişkenli bir işlevin(fonksiyon), sadece ilgili değişkeni sabit değilken alınan türevdir. Bu tarz türevleri içeren denklemlere kısmi diferansiyel denklem denir.

<span class="mw-page-title-main">Dirac delta fonksiyonu</span>

Adını Paul Dirac' tan alan Dirac delta fonksiyonu tek boyutta

<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Laplace dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Laplace dağılımı Pierre-Simon Laplace anısına isimlendirilmiş bir sürekli olasılık dağılımıdır. Arka arkaya birbiriyle yapıştırılmış şekilde ve bir de konum parametresi dahil edilerek birleştirilmiş iki üstel dağılımdan oluştuğu için, çift üstel dağılımı adı ile de anılmaktadır. İki bağımsız ve tıpatıp aynı şekilde üstel dağılım gösteren bir rassal değişken bir Laplace dağılımı ile işlev görürler. Bu, aynen üstel dağılım gösteren rassal zamanda değerlendirilen Brown devinimine benzer.

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

<span class="mw-page-title-main">Harmonik seriler</span>

Harmonik seri ıraksak bir seridir, harmonik sözcüğü ise müzikten devşirilmiştir.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

<span class="mw-page-title-main">Kuvvet serisi</span>

Matematikte kuvvet serisi

Matematikte, bir kuvvet serisinin yakınsaklık yarıçapı negatif olmayan bir gerçel sayı veya ∞ olan bir niceliktir. Verilen bir kuvvet serisinin yakınsaklık yarıçapı serinin yakınsak olduğu bölgeyi gösterir. Bu yakınsaklık yarıçapının içinde kalan bölgede, kuvvet serisi mutlak yakınsak ve aynı zamanda tıkız yakınsaktır. Seri yakınsak ise, o zaman bu seri bir analitik fonksiyonun bu yakınsaklık yarıçapının belirlediği bölgenin içinde kalan bölgede yakınsayan bir Taylor serisidir.

<span class="mw-page-title-main">Hiperbolik fonksiyon</span>

Matematikte, hiperbolik fonksiyonlar sıradan trigonometrik fonksiyonların analogudur. Temel hiperbolik fonksiyonlar hiperbolik sinüs "sinh", hiperbolik kosinüs "cosh", bunlardan türetilen hiperbolik tanjant "tanh" ve benzer fonksiyonlardır. Ters hiperbolik fonksiyonlar alan hiperbolik sinüsü "arsinh" ve benzeri fonksiyonlardır.

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Dizinin limiti</span>

Matematikte, bir dizinin limiti, dizinin terimlerinin yaklaştığı değerdir. Eğer böyle bir limit varsa diziye yakınsak denir. Yakınsamayan diziye ıraksak denir. Bir dizinin limiti, analizin nihai olarak dayandığı temel kavram olarak görülür.

<span class="mw-page-title-main">Logaritmik ortalama</span>

Matematikte logaritmik ortalama, iki pozitif gerçek sayının farkının bu sayıların doğal logaritmalarının farkına oranı olarak tanımlanır. Bu hesaplama, ısı ve kütle transferi içeren mühendislik problemlerinde kullanılabilir.