İçeriğe atla

Üçlü alfa süreci

Üç alfa sürecinin genel betimlemesi.

Üç alfa süreci, üç helyum çekirdeğinin (alfa parçacıkları) karbona çevrilme süreci.[1][2] Yüksek helyum yoğunluğuna sahip yıldızlarda, 100.000.000 K sıcaklıkta, çekirdeksel kaynaşma bağlamında hızlı gerçekleşen bir tepkimedir. Dolayısıyla genelde yakıtının önemli bir kısmını harcayıp, helyum üretmiş olan yaşlı yıldızlarda gözlemlenir:

4He + 4He ↔ 8Be
8Be + 4He ↔ 12C + γ + 7.367 MeV

Bu sürecin erke (enerji) üretimi 7,275 MeV düzeyindedir.

Sürecin başlaması

Üçlü alfa süreci, hidrojen yakıt depolarını tüketmiş olan yaşlı yıldızlarda meydana gelir. Hidrojen füzyonunun tamamlanmasıyla hidrostatik dengesini kaybeden yıldızın merkezi büzülmeye başlar ve sıcaklık yüksek değerlere ulaşır. Sıcaklık helyum çekirdekleri arasındaki itme kuvvetini yenecek seviyeye geldiğinde helyum füzyonu başlar. İki helyum atomunun füzyonu sonucu berilyum oluşur. 2He4 → Be8

Ancak Be8 izotopu kararsız yapıdadır ve çok çabuk bozunur (Be9 dengeli izotoptur).

Berilyum bozunma sorunu

Berilyumun kararsız yapıda olması, helyumun füzyon yoluyla daha ağır elementlere dönüşmesine engel teşkil eder. 1953 yılında Edwin Ernest Salpeter He4 ve Be8 elementlerinin çekirdekleri uyarıldığında benzer enerji seviyelerine sahip olduklarını, bu nedenle iki helyum çekirdeğinin füzyon sonucunda Be8 oluşturma olasılığının çok yüksek olduğunu ortaya koydu. Bu, Be8'in kendiliğinden bozunsa bile aynı hızla tekrar üretilebileceği anlamına geliyordu.

Ancak berilyumun karbona dönüşebilmesi için, Fred Hoyle'un aynı yıl ortaya attığı gibi, berilyum ile karbonun en yaygın izotopu olan C12'nin de çekirdekleri uyarıldığında en az bir ortak enerji seviyesine sahip olmaları gerekiyordu. Nitekim bu enerji seviyesinin varlığı 1954 yılında ispatlandı.[3] Böylece Be8 + He4 ↔ C12 reaksiyonu gerçekleşebilmektedir. Bu sürece Üçlü alfa süreci adı verilir.

Canlılık için önemi

Joseph Silk, Evrenin Kısa Tarihi[4] adlı kitabında üçlü alfa sürecinin canlılık için önemini şu şekilde belirtmiştir:

"Yıldızlardaki karbon üretimi yaşamın sırrıdır: vücutlarımızda bulunan karbon, milyarlarca yıl önce, şu anda çoktan ölmüş bulunan kırmızı dev yıldızların içinde üçlü alfa süreciyle oluşmuştur."

Kaynakça

  1. ^ Ostlie, Dale A. (2007). An introduction to modern stellar astrophysics. 2nd ed. Carroll, Bradley W. San Francisco: Pearson Addison-Wesley. ISBN 0-8053-0348-0. OCLC 68712191. 
  2. ^ Appenzeller; Harwit; Kippenhahn; Strittmatter; Trimble, eds. (1998). Astrophysics Library (3rd ed.). New York: Springer.
  3. ^ Burbidge, G., Burbidge, E. M., Fowler, W. A., Hoyle, F., Synthesis of the Elements in Stars, Reviews of Modern Physics, 29(4), 547-650, 1957
  4. ^ Joseph Silk, Evrenin Kısa Tarihi, 13. basım, Tübitak Popüler Bilim Kitapları, 2003.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Hidrojen</span> sembolü H ve atom numarası 1 olan kimyasal element

Hidrojen, sembolü H, atom numarası 1 olan kimyasal bir element. Standart sıcaklık ve basınç altında renksiz, kokusuz, metalik olmayan, tatsız, oldukça yanıcı ve H2 olarak bulunan bir diatomik gazdır. 1,00794 g/mol'lük atomik kütlesi ile tüm elementler arasında en hafif olanıdır. Periyodik cetvelin sol üst köşesinde yer alır. Hidrojenin adı, Yunancada "su oluşturan" anlamına gelen ὑδρογόνο'dan (idrogono) kelimesinden gelir.

<span class="mw-page-title-main">Radyoaktivite</span> Atom çekirdeğinin kendiliğinden parçalanması

Radyoaktivite, radyoaktiflik, ışınetkinlik veya nükleer bozunma; atom çekirdeğinin, daha küçük çekirdekler veya elektromanyetik ışımalar yayarak kendiliğinden parçalanmasıdır. Çekirdek tepkimesi sırasında veya çekirdeğin bozunması ile ortaya çıkar. En yaygın ışımalar alfa(α), beta(β) ve gamma(γ) ışımalarıdır. Bir maddenin radyoaktivitesi bekerel veya curie ile ölçülür.

<span class="mw-page-title-main">Nükleer füzyon</span> Hafif çekirdeklerin daha ağır bir çekirdek oluşturmak için birleşmesi

Nükleer füzyon, nükleer kaynaşma ya da kısaca füzyon; iki hafif elementin nükleer reaksiyonlar sonucu birleşerek daha ağır bir element oluşturmasıdır. Çekirdek tepkimesi olarak da bilinen bu tepkimenin sonucunda çok büyük miktarda enerji açığa çıkar.

<span class="mw-page-title-main">Yıldız</span> nükleer füzyon ile karanlık uzayda etrafına ısı ve ışık saçan kozmik cisim, plazma küresi

Yıldız, ağırlıklı olarak hidrojen ve helyumdan oluşan, karanlık uzayda ışık saçan, gökyüzünde bir nokta olarak görünen plazma küresidir. Bir araya toplanan yıldızların oluşturduğu galaksiler, gözlemlenebilir evrenin hâkimidir. Dünya'dan çıplak gözle görülebilen yaklaşık 6 bin dolayında yıldız vardır. Dünya'ya en yakın yıldız, aynı zamanda Dünya üzerindeki yaşamın gerçekleşmesi için gerekli olan ısı ve ışığın kaynağı da olan Güneş'tir.

<span class="mw-page-title-main">Nüklit</span>

Nüklit ya da nükleer tür; atom numarası (Z), kütle numarası (A) ve nükleer enerji durumuna göre nitelenen herhangi bir atom türüdür. Bu nitelemede; atom numarasını oluşturan proton sayısı ve proton sayısıyla birlikte kütle numarasını oluşturan nötron sayısı (N) değerlendirilirken, söz konusu enerji durumunun yarı ömrü de gözlem yapmayı sağlayacak kadar (genellikle 10-10 saniyeden) uzun olmalıdır.

<span class="mw-page-title-main">Atom çekirdeği</span> Atomun çekim kuvvetinin etkisiyle, çevresinde elektronlar dolaşan, proton ve nötronlardan oluşan pozitif elektron yüklü merkez bölümü

Atom çekirdeği, atomun merkezinde yer alan, proton ve nötronlardan oluşan küçük ve yoğun bir bölgedir. Atom çekirdeği 1911 yılında Ernest Rutherford tarafından keşfedildi. Bu keşif, 1909 yılında gerçekleştirilen Geiger-Marsden deneyine dayanmaktadır. Nötronun James Chadwick aracılığıyla 1932 yılında keşfinden sonra, çekirdeğin proton ve nötronlardan oluştuğu modeli Dmitri Ivanenko ve Werner Heisenberg tarafından çabucak geliştirildi. Atomun kütlesinin neredeyse tamamı çekirdek içerisindedir, elektron bulutunun atom kütlesine katkısı oldukça azdır. Proton ve nötronlar çekirdek kuvveti tarafından çekirdeği oluşturmak için birbirlerine bağlanmıştır. 

<span class="mw-page-title-main">Kırmızı dev</span> yıldız evriminin geç aşamalarında ve düşük ya da orta kütlede olan bir dev yıldız

Kırmızı dev, yıldız evriminin geç aşamalarında ve düşük ya da orta kütlede olan bir dev yıldız. 4.700 °C ya da daha düşük sıcaklıkta olabilir. Dış atmosferi şişkin ve seyrektir. Kırmızı devin dış görünümü sarı-turuncudan kırmızıya uzanabilmektedir ve K ve M tayfsal tipini içerir ayrıca S sınıfı yıldız ve karbon yıldızı.

<span class="mw-page-title-main">KAO döngüsü</span>

KAO (CNO) Döngüsü (Karbon-Azot-Oksijen), yıldızlarda hidrojeni helyuma çevirmek için gerçekleşen iki çekirdeksel kaynaşma (füzyon) sürecinden biridir. Diğeri ise proton-proton (pp) zinciridir.

<span class="mw-page-title-main">Proton-proton zincirleme reaksiyonu</span> yıldızların hidrojeni helyuma dönüştürdüğü bilinen iki nükleer füzyon reaksiyonu setinden biri

proton-proton (pp) zincir reaksiyonu, yıldızların hidrojeni helyuma dönüştürdüğü bilinen iki nükleer füzyon reaksiyonu setinden biridir. Güneş kütlesine eşit veya daha az kütleli yıldızlarda egemendir. Bilinen diğer reaksiyon CNO döngüsüdür. CNO, daha çok güneş kütlesinin yaklaşık 1.3 katından daha büyük kütlelere sahip yıldızlarda hakim olabilen reaksiyonlardır.

Yıldız nükleosentezi, yıldızlarda daha ağır kimyasal elementlerin oluşumuna yol açan tepkimelerin toplu adıdır.

<span class="mw-page-title-main">Helyum-3</span>

Helyum 3, Helyum soygazının radyoaktif olmayan daha hafif bir izotopudur. Helyum 3 çekirdeğinde (helion) iki proton ve bir nötron bulunur. Helyum 4 çekirdeği alfa parçacığı olarak adlandırılır. Alfa parçacığında iki nötron bulunurken, helionda bir nötron bulunur. Helionun ağırlığı 5.006 412 14 (86) × 10-27 kg'dır. Bu parçacığı bulan bilim insanı Avustralyalı çekirdeksel doğabilimci Mark Oliphant'tır.

<span class="mw-page-title-main">Nükleer fizik</span> atom çekirdeğinin yapısı ve davranışı ile uğraşan fizik alanı

Nükleer fizik veya çekirdek fiziği, atom çekirdeklerinin etkileşimlerini ve parçalarını inceleyen bir fizik alanıdır. Nükleer enerji üretimi ve nükleer silah teknolojisi nükleer fiziğin en çok bilinen uygulamalarıdır fakat nükleer tıp, manyetik rezonans görüntüleme, malzeme mühendisliğinde iyon implantasyonu, jeoloji ve arkeolojide radyo karbon tarihleme gibi birçok araştırma da nükleer fiziğin uygulama alanıdır.

Süpernova nükleosentezi kuramı, süpernova patlamalarındaki farklı pek çok kimyasal elementin nasıl üretildiğini açıklamaya çalışır. İlk kez 1954 yılında Fred Hoyle tarafından geliştirilmiştir. Nükleosentez, diğer bir deyişle hafif elementlerin ağır elementlere ergimesi, patlayıcı oksijenin yanması ya da silikonun yanması esnasında ortaya çıkar. Bu birleşme tepkimeleri, silikon, sülfür, klor, argon, sodyum, potasyum, kalsiyum, skandiyum, titanyumun yanı sıra, vanadyum, krom, manganez, demir, kobalt ve nikel gibi demir zirve elementlerinin oluşumuna yol açar. Büyük yıldızlarda saf hidrojen ve helyumdan ergiyebildikleri için bunlara “primer elementler” denir. Süpernovalardan atılımları sonucu, yıldızlararası ortamda bollukları artar. Nikelden ağır elementler, r-süreci denen bir süreçte nötronların hızlı bir biçimde tutulmasıyla ortaya çıkarlar. Ancak bunlar primer kimyasal elementlerden oldukça azdır. Yetersiz miktarda bulunan ağır elementlerin nükleosentezine yol açtığı düşünülen diğer süreçler, rp-süreci olarak bilinen proton yakalanması ve gamma süreci olarak bilinen ışıl parçalanmadır. Işıl parçalanma, ağır elementlerin en hafif ve en nötron fakiri izotoplarını sentezler.

<span class="mw-page-title-main">Nükleosentez</span> Başta proton ve nötronlar olmak üzere önceden var olan nükleonlardan yeni atom çekirdekleri yaratan süreç

Nükleosentez, daha önceden var olan çekirdek parçacıklarından, esasen proton ve nötronlardan, yeni atomik çekirdeklerin yaratılması sürecidir. İlk atomik çekirdekler, Büyük Patlama'dan yaklaşık üç dakika sonra, Büyük Patlama nükleosentezi olarak bilinen sürecin sonunda oluşmuştur. Hidrojen ve helyumun ilk yıldızların bileşenlerini oluşturması ve kainatın bugünkü hidrojen/helyum oranı o zamanlara dayanır.

Nükleer bağlanma enerjisi, atomun çekirdeğini bileşenlerine ayırmak için gereken enerjidir. Bu bileşenler nötron, proton ve nükleondur. Bağ enerjisi genelde pozitif işaretlidir çünkü çoğu çekirdek parçalara ayrılmak için net bir enerjiye ihtiyacı vardır. Bu yüzden, genelde bir atomun çekirdeğinin kütlesi ayrı ayrı ölçüldüğünde daha azdır. Bu fark nükleer bağlanma enerjisidir ki bu enerji birbirini tutan bileşenlerin uyguladığı kuvvet tarafından sağlanır. Çekirdeği bileşenlerine ayırırken, kütlenin bir kısmı büyük bir enerjiye dönüştürülür bu yüzden bir kısım kütle eksilir, eksik kütlede bir fark yaratır çekirdekte. Bu eksik kütle, kütle eksiği diye bilinir ve çekirdek oluşurken çıkan enerjiye takabül eder.

<span class="mw-page-title-main">Sarı cüce</span>

Sarı cüce yıldız veya G-tipi anakol yıldızı, yıldız sınıfı G ve aydınlatma gücü V olan anakol yıldızlarıdır. Bu tür yıldızlar 0,8 Güneş kütlesi ile 1,2 Güneş kütlesi arasında kalan yıldızlar olarak tanımlanır ve ortalama sıcaklıkları 5.300-6.000 °K arasındadır. Ömürlerinin sonuna doğru kırmızı dev halini alırlar, ardından ise beyaz cüce olarak ölürler. Güneş, G-tipi anakol yıldızları arasında en çok bilinenidir. Güneş her saniyede bir yaklaşık 600 milyon ton hidrojeni helyuma dönüştürerek füzyon nükleer enerjisi üretmektedir. Bilinen diğer G-tipi yıldızlar Alpha Centauri A, Tau Ceti ve 51 Pegasi'dir.

<span class="mw-page-title-main">Yatay kol</span> Hertzsprung-Russell diyagramında kararlı helyum yanması durumundaki orta kütleli yıldızlar

Yatay kol yıldızları yıldız evriminde kırmızı devlerden sonraki aşamaya geçen, Güneş kütlesine yakın kütleye sahip yıldızlardır. Hidrojen füzyonu yapan anakol yıldızları çekirdekteki hidrojenleri bittiğinde kendi içlerine çökerler ve çekirdek etrafındaki kabukta hidrojen füzyonu yapmaya başlarlar. Bu yıldızlara kırmızı dev adı verilir. Zamanla çekirdeğin etrafındaki hidrojen de bittiğinde yıldız tekrar kendi içine çöker ve bu sefer helyum füzyonu yapabilen yatay kol yıldızları meydana gelir. Bu yıldızlar çekirdekte helyumu ve çekirdeğin etrafında da hidrojeni füzyona uğratabilirler.

Karbon yıldızı, atmosferi oksijenden daha fazla karbon içeren tipik olarak asimptotik dev kol yıldızı ve parlak bir kırmızı devdir. İki element, yıldızın üst katmanlarında birleşerek atmosferdeki tüm oksijeni tüketen, karbon atomlarını diğer karbon bileşiklerini oluşturmak üzere serbest bırakan ve yıldıza "isli" bir atmosfer ve çarpıcı yakut kırmızısı bir görünüm veren karbonmonoksiti oluşturur. Ayrıca bazı cüce ve üstdev karbon yıldızları da vardır ve daha yaygın olan dev yıldızlara bazen onları ayırt etmek için klasik karbon yıldızları denir.

<span class="mw-page-title-main">Helyum parlaması</span>

Helyum parlaması yaklaşık Güneş kütlesinde bir yıldızın kırmızı dev aşamasından sonra geçirdiği bir evredir. Yıldızın çekirdeğindeki helyum atomları çok kısa bir süreç içerisinde birbirleriyle üçlü alfa süreci ile kaynaşarak karbon atomlarına dönüşürler ve bu süreçte çok büyük enerji ortaya çıkar. Güneş anakol yıldızı olmaktan çıkıp kırmızı dev aşamasına geldikten yaklaşık 1,2 milyar yıl sonra helyum parlaması geçirecektir.

Karbon yakma işlemi veya karbon füzyonu, karbonu diğer elementlerle birleştiren büyük kütleli yıldızların (doğumda en az 8 tane) çekirdeğinde gerçekleşen bir dizi nükleer füzyon reaksiyonudur. Yüksek sıcaklıklar (> 5×108 K veya 50 keV) ve yoğunluklar (> 3×109 kg/m3) gerektirmektedir.