İçeriğe atla

Üçgensel sayı

İlk altı üçgensel sayı

Bir üçgensel sayı, 1'den n'e kadar olan n doğal sayının toplamıdır. Bu sayılara üçgensel denmesinin sebebi, bir üçgen şeklinde dizilebilecek eşit çaplı topların sayılarına karşılık gelmeleridir. n'inci üçgensel sayının formülü şöyledir:[1]

Bu formülden de görüldüğü üzere, n'inci üçgensel sayı aynı zamanda, n + 1 elemanlı bir kümeden seçilebilecek birbirinden farklı tüm eleman çiftlerinin de sayısını verir.

İlk bazı üçgensel sayılar:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465... (OEIS'de A000217 dizisi)

Alman matematikçi Carl Friedrich Gauss, 1796'da her pozitif tam sayının en fazla üç üçgensel sayının toplamı olarak yazılabileceğini kanıtlamıştır.

Kaynakça

  1. ^ "Triangular numbers". 20 Nisan 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Nisan 2020. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pi sayısı</span> dairenin çevresinin çapına oranını ifade eden irrasyonel matematik sabiti

Pi sayısı , bir dairenin çevresinin çapına bölümü ile elde edilen irrasyonel matematik sabitidir. İsmini, Yunanca περίμετρον (çevre) sözcüğünün ilk harfi olan π harfinden alır. Pi sayısı, Arşimet sabiti ve Ludolph sayısı olarak da bilinir. Aynı zamanda ismini yunancada pie anlamına gelen πίτα' dan alır.

2 (iki) bir sayı, rakam ve gliftir. 1'den sonraki ve 3'ten önceki doğal sayıdır. En küçük ve hatta yegâne çift asal sayıdır. Bir dualitenin temelini oluşturduğundan, birçok kültürde dini ve manevi öneme sahiptir.

<span class="mw-page-title-main">Pascal üçgeni</span>

Pascal üçgeni, matematikte binom katsayılarını içeren üçgensel bir dizidir. Fransız matematikçi Blaise Pascal'ın soyadıyla anılsa da Pascal'dan önce Hindistan, İran, Çin, Almanya ve İtalya'da matematikçiler tarafından çalışılmıştır.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

<span class="mw-page-title-main">Fibonacci dizisi</span> ardışık 2 teriminin toplamı bir sonraki terimi veren doğal sayı dizisi

Fibonacci dizisi, her sayının kendinden önceki ile toplanması sonucu oluşan bir sayı dizisidir. Ayrıca ardışık her iki sayının bölümü altın orana yakın bir değer vermektedir değer ne kadar büyük olursa altın orana o kadar yakın olur örneğin:55:34=1,617... 1, 2, 3, 5, 8, 13, 21, 34, 55, 89... şeklinde devam eden bu dizide sayılar birbirleriyle oranlandığında altın oran ortaya çıkar, yani bir sayı kendisinden önceki sayıya bölündüğünde altın orana gittikçe yaklaşan bir dizi elde edilir. Bu durumda genel olarak n'inci Fibonacci sayısı F(n) şu şekilde ifade edilir:

<span class="mw-page-title-main">Karekök</span>

Matematikte negatif olmayan bir gerçel sayısının temel karekök bulma işlemi şeklinde gösterilir ve karesi (bir sayının kendisiyle çarpılmasının sonucu) olan negatif olmayan bir gerçek sayıyı ifade eder.

<span class="mw-page-title-main">Üs</span> matematik terimi

Üs, bazen kuvvet, b taban, n üs veya kuvvet olmak üzere, bn olarak gösterilen ve "b üssü n", "b üzeri n" veya "b'nin n'inci kuvveti" olarak telaffuz edilen matematiksel işlem. Eğer n pozitif bir tam sayıysa, tabanın tekrarlanan çarpımına karşılık gelir:

<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Cebirsel sayılar</span>

Cebirsel sayılar, rasyonel katsayıları olan tek değişkenli sıfırdan farklı bir polinomun kökü olarak ifade edilebilen sayılardır. Mesela, altın oran, , cebirsel bir sayı örneğidir çünkü x2x − 1 polinomunun bir köküdür. Bu durumda, söz konusu polinomun değerinin sıfıra eşitlendiği x değeridir. Diğer bir örnek olarak, biçimindeki karmaşık sayı, x4 + 4 polinomunun bir kökü olduğundan dolayı cebirsel sayı olarak kabul edilir.

Matematikte de Moivre formülü, 18. yüzyıl Fransız matematikçisi Abraham de Moivre anısına isimlendirilmiş ve herhangi bir karmaşık sayı için şu ifadenin geçerli olduğunu önerir:

<span class="mw-page-title-main">Dörtyüzlüsel sayı</span>

Dörtyüzlüsel sayı, üçgen tabanlı ve bir piramidi temsil eden biçimli sayıdır. n. dörtyüzlüsel sayı ilk n üçgensel sayının toplamına eşittir.

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Sayılar teorisinde Liouville sayıları, rasyonel sayılara sonsuz küçük yakınlıkta irrasyonel sayılardır. Bir Liouville sayısının her komşuluğunda bir rasyonel sayı vardır. Şu şekilde formüle edilebilir:

bir Liouville sayısı olsun. O zaman her sayma sayısı için öyle bir tam sayı ve sayma sayısı vardır ki,

Öklid'in teoremi, sayılar teorisinde temel bir ifade olup sonsuz sayıda asal sayı olduğunu ileri sürer. Teoremin iyi bilinen farklı ispatları bulunmaktadır.

Matematikte Euler sayıları, Taylor serisi açılımıyla tanımlanan bir En tam sayı dizisidir..

Möbius fonksiyonu , 1832 yılında Alman matematikçi August Ferdinand Möbius tarafından ortaya atılan çarpımsal bir fonksiyondur. Temel ve analitik sayılar teorisi'nde çoğunlukla kullanılan fonksiyon, genellikle Möbius inversiyon formülü'nün bir parçası olarak görülür. Gian-Carlo Rota'nın 1960'lı yıllardaki çalışmaları sonucunda ile gösterilen Möbius fonksiyonunun genellemeleri kombinatoriğe tanıtılmıştır.

<span class="mw-page-title-main">Beşgensel sayı</span>

Bir beşgensel sayı, üçgensel veya karesel sayıların beşgene uyarlanmış halidir. n'inci beşgensel sayı pn, her kenarı 1'den n'ye kadar noktadan oluşan ve bir köşesi ortak olan beşgenin birbirinden farklı noktalarının sayısına eşittir.

<span class="mw-page-title-main">Altıgensel sayı</span>

n'inci altıgensel sayı, bir köşesi ortak olan ve köşeleri 2, ..., n noktadan oluşan altıgenin birbirinden farklı noktalarının sayısına eşittir.

Matematik alanında, toplam veya genel toplam olarak sonuçlanan, toplananlar ya da toplamalar diye adlandırılan bir sayı dizisinin eklenme sürecine toplam/toplama denir. Sayıların yanı sıra, fonksiyonlar, vektörler, matrisler, polinomlar ve genelde "+" işareti ile tanımlanmış işleme sahip diğer tüm matematiksel nesne türleri de toplanabilir.