İçeriğe atla

Üç cisim problemi

Bir çeşitkenar üçgenin köşelerinde yer alan ve başlangıç hızları sıfır olan üç özdeş cismin yaklaşık yörüngeleri. Kütle merkezi, momentumun korunumu yasası uyarınca yerinde kalır.

Fizikte, özellikle de klasik mekanikte, üç cisim problemi, üç noktalı kütlelerin başlangıç konumlarını ve hızlarını (veya momentumlarını) almayı ve sonraki yörüngelerini Newton'un hareket yasalarını ve Newton'un evrensel kütleçekim yasasını kullanarak hesaplamayı içerir.[1] iki cisim problemlerinin aksine genel bir kapalı form çözümü yoktur.[1] Üç cisim birbirinin yörüngesinde olduğunda, ortaya çıkan dinamik sistem çoğu başlangıç koşulu için kaotiktir ve cisimlerin hareketlerini tahmin etmenin tek yolu onları sayısal yöntemler kullanarak hesaplamaktır.

Üç cisim problemi, n-cisim probleminin özel bir durumudur. Tarihsel olarak, kapsamlı incelemeye konu olan ilk spesifik üç cisim problemi Ay, Dünya ve Güneş'i kapsayan problemdi.[2] Genişletilmiş modern anlamda, üç cisim problemi, klasik mekanikte veya kuantum mekaniğinde üç parçacığın hareketini modelleyen herhangi bir problemdir.

Ayrıca bakınız

Kaynakça

  1. ^ a b Barrow-Green, June (2008). "The Three-Body Problem". Gowers, Timothy; Barrow-Green, June; Leader, Imre (Ed.). The Princeton Companion to Mathematics. Princeton University Press. ss. 726-728. 
  2. ^ "Historical Notes: Three-Body Problem". 10 Aralık 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Temmuz 2017. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

<span class="mw-page-title-main">Mekanik</span> kuvvetlere veya yer değiştirmelere maruz kalan fiziksel cisimlerle ilgilenen bilim

Mekanik, fiziğin fiziksel nesnelerin hareketleriyle, özellikle kuvvet, madde ve hareket arasındaki ilişkilerle ilgili alanıdır. Nesnelere uygulanan kuvvetler yer değiştirmeler veya bir nesnenin çevresine göre konumunda değişikliklerle sonuçlanır. Fizik'in bu dalının kökenleri Antik Yunanistan'da Aristoteles ve Arşimet'in yazılarında bulunur.. Erken modern dönem sırasında, Galileo, Kepler ve Newton gibi bilim adamları şimdiki klasik mekaniğin temellerini attılar. Klasik mekanik, duran veya ışık hızından çok daha düşük hızlarla hareket eden cisimlerle ilgili klasik fizikin bir dalıdır. Kuantum aleminde olmayan cisimlerin hareketini ve üzerindeki kuvvetleri inceleyen bilim dalı olarak da tanımlanabilir. Alan bugün kuantum teorisi açısından daha az anlaşılmıştır.

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Newton'un hareket yasaları</span> Bilimsel Yasalar

Newton'un hareket yasaları, bir cisim üzerine etki eden kuvvetler ve cismin yaptığı hareket arasındaki ilişkileri ortaya koyan üç yasadır. İlk kez Isaac Newton tarafından 5 Temmuz 1687 tarihinde yayımlanan Philosophiae Naturalis Principia Mathematica adlı çalışmada ortaya konmuştur. Bu yasalar klasik mekaniğin temelini oluşturmuş, bizzat Newton tarafından fiziksel nesnelerin hareketleri ile ilgili birçok olayın açıklanmasında kullanılmıştır. Newton, çalışmasının üçüncü bölümünde, bu hareket yasalarını ve yine kendi bulduğu evrensel kütleçekim yasasını kullanarak Kepler'in gezegensel hareket yasalarının elde edilebileceğini göstermiştir.

1. Yasa
Eylemsiz referans sistemi adı verilen öyle referans sistemleri seçebiliriz ki, bu sistemde bulunan bir parçacık üzerine bir net kuvvet etki etmiyorsa cismin hızında herhangi bir değişiklik olmaz. Bu yasa genellikle şu şekilde basitleştirilir: “Bir cisim üzerine dengelenmemiş bir dış kuvvet etki etmedikçe, cisim hareket durumunu korur.”
2. Yasa
Eylemsiz bir referans sisteminde, bir parçacık üzerindeki net kuvvet onun çizgisel momentumunun zaman ile değişimi ile orantılıdır:
<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Joseph-Louis Lagrange</span> İtalyan matematikçi (1736-1813)

Joseph-Louis Lagrange bir İtalyan Aydınlanma Dönemi matematikçisi ve astronomudur. Analiz, sayı kuramı ve klasik ve gök mekaniği alanlarında önemli katkıları olmuştur. 1776 yılında Euler ve d'Alembert'in tavsiyesi ile yirmi yıldan fazla yaşadığı, çalıştığı ve Fransız Bilim Akademisi'nden birçok ödül aldığı Berlin, Prusya'da bulunan Prusya Bilim Akademisi'nde Euler'den devraldığı matematik yöneticiliği görevini üstlendi. Lagrange'ın analitik matematik üzerine olan ve Newton'dan sonra klasik mekaniğe en kapsamlı şekilde yaklaşan ve matematiksel fiziğin gelişimi için temel hazırlayan tezi Berlin'de yazıldı ve 1788 yılında yayımlandı. 1787'de 51 yaşındayken Berlin'den Paris'e taşındı ve Fransız Akademisi'nin bir üyesi oldu. Hayatının sonuna kadar Fransa'da kaldı. 1794 yılında École Polytechnique açıldığında oradaki ilk analiz profesörü oldu. 1799 yılında ise Bureau des Longitues'in kurucu üyesi ve senatör oldu.

<span class="mw-page-title-main">İki cisim problemi</span>

Klasik mekanikte iki cisim problemi sadece birbirleriyle etkileşen iki nokta parçacığın hareketini tanımlamak için kullanılır. Bir gezegen ve yörüngesinde dolanan bir uydu, bir yıldız ve yörüngesindeki bir gezegen, birbirlerinin yörüngelerinde dolanan iki yıldız ve klasik atom modelinde çekirdeğin etrafında dolanan elektron, yaygın örneklerdir.

<span class="mw-page-title-main">Kepler'in gezegensel hareket yasaları</span>

Kepler'in gezegensel hareket yasaları, Güneş Sisteminde bulunan gezegenlerin hareketlerini açıklayan üç matematiksel yasadır. Alman matematikçi ve astronom Johannes Kepler (1572-1630) tarafından keşfedilmişlerdir.

<span class="mw-page-title-main">Hesaplamalı fizik</span>

Hesaplamalı fizik, fizik sorunlarını çözebilmek için sayısal algoritmaların üretilmesi ve gerçeklenmesini içerir. Genelde kuramsal fizikin bir alt dalı olarak değerlendirilir ancak bazen de kuramsal ve deneysel fizik arasında orta bir dal olarak da düşünülür.

<span class="mw-page-title-main">Hareket (fizik)</span>

Hareket ya da devinim, bir cismin sabit bir noktaya göre yerinin zamana karşı değişimidir. Hareketle ilgilenen bilim sahaları, mekanik ve kinematik olarak sınıflandırılabilir. İlkinde kuvvet ve kütle üzerindeki etkisi incelenirken, ikincisinde, kütlenin konumu, hızı gibi nitelikler incelenir.

<span class="mw-page-title-main">George William Hill</span>

George William Hill, Amerikalı astronom ve matematikçi. Bağımsız ve büyük ölçüde bilim camiasından izole bir şekilde çalışarak gök mekaniğine ve adi diferansiyel denklemler teorisine önemli katkılarda bulunmuştur. Çalışmalarının önemi 1905 yılında Henri Poincaré tarafından açıkça kabul edilmiştir. Hill 1909 yılında matematiksel astronomi alanındaki araştırmaları nedeniyle Royal Society'nin Copley Madalyası ile ödüllendirildi. Hill küresi ile birlikte Hill diferansiyel denklemi ile tanınmaktadır.

<span class="mw-page-title-main">Mutlak zaman ve mekan</span>

Aslen Sir Isaac Newton tarafından Doğa Felsefesinin Matematiksel İlkeleri adlı kitabında tanıtılan mutlak zaman ve mekan kavramları Newton mekaniğini kolaylaştıran teorik bir temel sağlamıştır. Newton'a göre, mutlak zaman ve mekan sırasıyla nesnel gerçekliğin bağımsız yönleridir. Mutlak, gerçek ve matematiksel zaman, kendisi ve kendi doğası gereği değişmeyen ve değiştirilmeyen şekilde akar ve diğer bir deyişle ‘süre’ denir; göreceli, görünür ve genel zaman, hareketle ifade edilen sürenin makul ve dış ölçüsüdür ki bu da genellikle ‘gerçek zaman’ olarak adlandırılır.

De motu corporum in gyrum, Isaac Newton’un 1684 Kasım’ında Edmond Halley’e gönderdiği el yazısı müsveddelerin tahmin edilen başlığıdır. Newton bu müsveddeleri, Halley’in Newton’u problemler üzerine sorguladığı ve Halley’in fikirleri ve Sör Christopher Wren ile Robert Hooke dahil, onun Londra’daki bilimsel camiası hususlarında fikir jimnastiğinin yapıldığı o yıl içinde daha önce Halley tarafından yapılan bir ziyareti takiben göndermiştir.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

Bu maddede klasik mekanik tarihi anlatılmaktadır.

Fizik'te, yerçekimi teorileri kütleli cisimlerin hareket mekanizmalarını kapsayan etkileşimleri esas alır. Antik zamanlardan bu yana birçok Yerçekimi teorisi ortaya atılmıştır.

<span class="mw-page-title-main">Yörünge mekaniği</span>

Yörünge mekaniği veya astrodinamik, roketler ve diğer uzay araçlarının hareketini ilgilendiren pratik problemlere, balistik ve gök mekaniğinin uygulamasıdır. Bu nesnelerin hareketi genellikle Newton'un hareket kanunları ve Newton'un evrensel çekim yasası ile hesaplanır. Bu, uzay görevi tasarımı ve denetimi altında olan bir çekirdek disiplindir. Gök mekaniği; daha genel olarak yıldız sistemleri, gezegenler, uydular ve kuyruklu yıldızlar gibi kütle çekimi etkisinde bulunan yörünge sistemleri için geçerlidir. Yörünge mekaniği; uzay araçlarının yörüngelerine ait yörünge manevraları, yörünge düzlemi değişiklikleri ve gezegenler arası transferler gibi kavramlara odaklanır ve itici manevralar sonuçlarını tahmin etmek için görev planlamacıları tarafından kullanılır. Genel görelilik teorisi, yörüngeleri hesaplamak için Newton yasalarından daha kesin bir teoridir ve doğru hesaplar yapmak ya da yüksek yerçekimini ihtiva eden durumlar söz konusu olduğunda bazen gereklidir.

<span class="mw-page-title-main">Yörünge durum vektörleri</span>

Yörünge durum vektörleri veya durum vektörleri, gök mekaniği ve yörünge mekaniğinde, konum ve hız kartezyen vektörlerin zaman (devir) ile birlikte uzaydaki yörüngede bulunan bir cismin benzersiz şekildeki gidim izinin belirlenmesidir.