İçeriğe atla

Öznitelik çıkarımı

Makine öğrenimi, örüntü tanıma ve görüntü işleme alanlarında kullanılan öznitelik çıkarımı (özellik çıkarımı), girdi olarak verilen ölçülmüş verileri kullanarak türetilmiş değerler (öznitelikler) oluşturur. Türetilen değerlerin bilgilendirici ve artıksız olması, öğrenme sürecini kolaylaştırıcı olması ve bazı durumlarda insan uzmanlar tarafından daha iyi anlaşılabilir (yorumlanabilir) olması amaçlanır. Öznitelik çıkarımı, boyut indirgeme konusuyla ilişkilidir.

Genel

Öznitelik çıkarımı büyük bir veri kümesini açıklamak için gereken kaynak miktarını azaltmayı içerir. Karmaşık bir veri üzerinde analiz yapılırken ortaya çıkan ana problemlerden biri de kullanılan değişken sayısının artmasıdır. Çok fazla değişken içeren analizler genellikle büyük bir bellek alanına ve işlemci gücüne gereksinim duyar, ayrıca sınıflandırma algoritmalarının eğitim kümesine aşırı uymasına sebep olarak tahmin performansını düşürür. Öznitelik çıkarımı, değişkenlerin kombinasyonlarını oluşturarak bu sorunları aşmayı ve veriyi yeterli bir doğrulukla açıklayabilir olmayı sağlayan yöntemleri tanımlayan genel bir terimdir.

Öznitelikler bir alan uzmanı tarafından öznitelik mühendisliği yapılarak çıkarılabilir. Eğer böyle bir uzman bilgisi mevcut değilse genel boyut indirgeme yöntemleri kullanılabilir.[1] Bunlardan bazıları:

Görüntü işleme

Önemli bir uygulama alanı görüntü işlemedir. Bir görüntünün ya da videonun içinden istenilen kısımların ya da şekillerin (öznitelikler) çeşitli algoritmalar yardımıyla tespit edilmesi ve yalıtılması için kullanılır. Özellikle optik karakter tanıma konusunda kullanımı önemlidir.

Öznitelik çıkarma yazılımları

Birçok veri analizi yazılımı öznitelik çıkarımını ve boyut indirgemeyi içeren paketler sağlar. Yaygın sayısal programlama ortamlarından MATLAB, SciLab, NumPy veR programlama dili bazı basit öznitelik çıkarma yöntemlerini dahili komutlar ile destekler. Daha özellikli algoritmalara kamuya açık kodlar ya da eklentiler olarak ulaşılabilir.

Kaynakça

  1. ^ Ethem Alpaydın (2010). Introduction to Machine Learning. Londra: The MIT Press. s. 110. ISBN 978-0-262-01243-0. 2 Mart 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Şubat 2017. 

İlgili Araştırma Makaleleri

Bilişim, bilişim bilimi ya da bilgisayar bilimi, bilgi ve hesaplamanın kuramsal temellerini ve bunların bilgisayar sistemlerinde uygulanabilmeleri sağlayan pratik teknikleri araştıran bir yapısal bilim dalıdır. Bilişimciler ya da bilgisayar bilimcileri bilgi oluşturan, tanımlayan ve dönüştüren algoritmik süreçler icat edip, kompleks sistemleri tasarlamak ve modellemek için uygun soyutlamalar formüle ederler. Bilişim Dünya'da hızla gelişmeye devam eden önemli bir teknolojidir.

<span class="mw-page-title-main">Yapay zekâ</span> insani zekaya sahip makine ve yazılım geliştiren bilgisayar bilimleri dalı

Yapay zekâ ya da kısaca YZ,, insanlar da dahil olmak üzere hayvanlar tarafından, doğal zekânın aksine makineler tarafından görüntülenen zekâ çeşididir. İlk ve ikinci kategoriler arasındaki ayrım genellikle seçilen kısaltmayla ortaya çıkar. Güçlü yapay zeka genellikle Yapay genel zekâ olarak etiketlenirken, doğal zekayı taklit etme girişimleri yapay biyolojik zekâ olarak adlandırılır. Önde gelen yapay zeka ders kitapları, alanı zeki etmenlerin çalışması olarak tanımlar: Çevresini algılayan ve hedeflerine başarıyla ulaşma şansını en üst düzeye çıkaran eylemleri gerçekleştiren herhangi bir cihaz. Halk arasında, yapay zekâ kavramı genellikle insanların insan zihni ile ilişkilendirdiği öğrenme ve problem çözme gibi bilişsel eylemleri taklit eden makineleri tanımlamak için kullanılır.

<span class="mw-page-title-main">İstatistik</span>

İstatistik veya sayım bilimi, belirli bir amaç için veri toplama, tablo ve grafiklerle özetleme, sonuçları yorumlama, sonuçların güven derecelerini açıklama, örneklerden elde edilen sonuçları kitle için genelleme, özellikler arasındaki ilişkiyi araştırma, çeşitli konularda geleceğe ilişkin tahmin yapma, deney düzenleme ve gözlem ilkelerini kapsayan bir bilimdir. Belirli bir amaç için verilerin toplanması, sınıflandırılması, çözümlenmesi ve sonuçlarının yorumlanması esasına dayanır. Bu çerçevede yapılan işlemlerin tümüne sayımlama denir.

Veri yapısı, bilgisayar ortamında verilerin etkin olarak saklanması ve işlenmesi için kullanılan yapı.

<span class="mw-page-title-main">Genetik algoritma</span>

Genetik algoritmalar, doğada gözlemlenen evrimsel mekanizmalara benzer mekanizmalar kullanarak çalışan eniyileştirme yöntemidir. Çok boyutlu uzayda belirli bir maliyet fonksiyonuna göre en iyileştirme amacıyla iterasyonlar yapan ve her iterasyonda en iyi sonucu üreten kromozomun hayatta kalması prensibine dayanan en iyi çözümü arama yöntemidir.

<span class="mw-page-title-main">Sıralama algoritması</span>

Sıralama algoritması, bilgisayar bilimlerinde ya da matematikte kullanılan, verilen bir listenin elemanlarını belirli bir sıraya sokan algoritmadır. En çok kullanılan sıralama türleri, sayı büyüklüğüne göre sıralama ve alfabetik sıralamadır. Sıralama işleminin verimli yapılması, arama ve birleştirme algoritmaları gibi çalışması için sıralanmış dizilere gereksinim duyan algoritmaların başarımının yüksek olması için önemlidir. Sıralama algoritmaları bilgisayarlarda tutulan verilerin düzenlenmesini ve insan kullanıcı tarafından daha rahat algılanmasını da sağlar.

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

<span class="mw-page-title-main">Makine öğrenimi</span> algoritmaların ve istatistiksel modellerin kullanımıyla bilgisayarların yapacakları işleri kendileri çözebilmeleri

Makine öğrenimi (ML), veriden öğrenebilen ve görünmeyen verilere genelleştirebilen ve dolayısıyla açık talimatlar olmadan görevleri yerine getirebilen istatistiksel algoritmaların geliştirilmesi ve incelenmesiyle ilgilenen, yapay zekâda akademik bir disiplindir. Makine öğrenimi, bilgisayarların deneyimlerinden öğrenerek karmaşık görevleri otomatikleştirmeyi sağlayan bir yapay zeka alanıdır. Bu, veri analizi yaparak örüntüler tespit etme ve tahminlerde bulunma yeteneğine dayanır. Son zamanlarda yapay sinir ağları, performans açısından önceki birçok yaklaşımı geride bırakmayı başardı.

<span class="mw-page-title-main">Kriptografik özet fonksiyonu</span>

Kriptografik özet fonksiyonu çeşitli güvenlik özelliklerini sağlayan bir özet fonksiyonudur. Veriyi belirli uzunlukta bir bit dizisine, (kriptografik) özet değerine, dönüştürür. Bu dönüşüm öyle olmalıdır ki verideki herhangi bir değişiklik özet değerini değiştirmelidir. Özetlenecek veri mesaj, özet değeri ise mesaj özeti veya kısaca özet olarak da adlandırılır.

Sayısal görüntü işleme bilgisayar algoritmaları kullanarak sayısal resimler üzerinde görüntü işlemenin gerçekleştirilmesidir. Sayısal sinyal işlemenin bir alt konusu olarak kabul edilen sayısal görüntü işleme, analog görüntü işlemeye göre birçok avantaja sahiptir. Sayısal görüntü işlemede giriş verilerine uygulanabilecek algoritmalar daha fazladır ve analog görüntü işlemeye göre işlem sırasında ortaya çıkabilecek gürültü artışı ya da sinyal bozulması gibi problemler önlenebilir. Görüntüler iki boyuttan daha fazla boyutta tanımlanabildiğinden beri sayısal görüntü işleme çok boyutlu sistemler şekline modellenebilmektedir.

<span class="mw-page-title-main">Gözetimli öğrenme</span>

Gözetimli öğrenme ya da denetimli öğrenme, bilinen etiketler ve özellikler kullanarak bir fonksiyon öğrendiğimiz, makine öğreniminin önemli bir alt dalıdır. Bu yöntem, eğitim veri seti kullanılarak öğrenilen modelin, yeni ve bilinmeyen veri noktalarını doğru bir şekilde tahmin etmesini amaçlar.

<span class="mw-page-title-main">Öznitelik (makine öğrenmesi)</span>

Öznitelik, makine öğrenmesi ve örüntü tanıma alanlarında, gözlemlenen bir olgunun ölçülebilir bir niteliğidir. Anlaşılır, ayırt edici ve bağımsız özellikler seçmek etkili örüntü tanıma, sınıflandırma ve regresyon algoritmaları için kritik bir adımdır. Özellikler genellikle sayısaldır ancak sentaktik örüntü analizinde kelimeler ve çizgeler de kullanılır. 

İlişkisel veritabanı, 1970 yılında Edgar Frank Codd tarafından önerildiği gibi, organizasyonu ilişkisel veri modeline dayanan bir dijital veritabanıdır. İlişkisel veritabanlarını korumak için kullanılan çeşitli yazılım sistemleri bir ilişkisel veritabanı yönetim sistemi (RDBMS) olarak bilinir. Neredeyse tüm ilişkisel veritabanı sistemleri, sorgulama ve veritabanının bakımı için dil olarak SQL(Structured Query Language) kullanmaktadırlar.

<span class="mw-page-title-main">Boyut indirgeme</span>

Veri biliminde, boyut indirgeme, bir verinin yüksek boyutlu bir uzaydan, düşük boyutlu bir uzaya, anlamını kaybetmeyecek şekilde dönüştürülmesidir. Yüksek boyutlu bir veriyi işlemek daha fazla işlem yükü gerektirir. Bu yüzden, yüksek sayıda gözlemin ve değişkenin incelendiği sinyal işleme, konuşma tanıma, nöroinformatik, biyoinformatik gibi alanlarda boyut indiremesi sıkça kullanılır.

<span class="mw-page-title-main">Temel bileşen analizi</span>

İstatistikte, temel bileşen analizi (TBA), çok boyutlu uzaydaki bir verinin daha düşük boyutlu bir uzaya izdüşümünü, varyansı maksimize edecek şekilde bulma yöntemidir. Uzayda bir noktalar kümesi için, tüm noktalara ortalama uzaklığı en az olan "en uygun doğru" seçilir. Daha sonra bu doğruya dik olanlar arasından yine en uygun doğru seçilerek, bu adımlar, yeni bir boyutun varyansı belirli bir eşiğin altına inene kadar tekrarlanır. Bu sürecin sonunda elde edilen doğrular, bir doğrusal uzayın tabanlarını oluşturur. Bu taban vektörlerine temel bileşen denir. Verinin temel bileşenleri birbirinden bağımsız olur.

<span class="mw-page-title-main">Matematiksel istatistik</span> matematiksel yöntemlerin kullanıldığı olası istatistikler

Matematiksel istatistik, istatistiksel veri toplama tekniklerinin aksine, matematiğin bir dalı olan olasılık teorisinin istatistiğe uygulanmasıdır. Bunun için kullanılan özel matematiksel teknikler arasında matematiksel analiz, doğrusal cebir, stokastik analiz, diferansiyel denklemler ve ölçü teorisi bulunur.

<span class="mw-page-title-main">Veri bilimi</span> verilerden bilgi ve içgörü elde etmeye odaklanan disiplinler arası çalışma alanı

Veri bilimi, yapılandırılmış ve yapılandırılmamış verilerden bilgi ve öngörü elde etmek için bilimsel yöntemleri, süreçleri, algoritmaları ve sistemleri kullanan çok disiplinli bir alandır. Veri bilimi veri madenciliği ve büyük verilerle ilişkilidir.

<span class="mw-page-title-main">Analiz</span> belirli bir türdeki mevcut verilere analitik yöntemler uygulama, karmaşık bir konuyu veya maddeyi daha iyi anlamak için daha küçük parçalara ayırma süreci

Analiz, karmaşık bir konuyu veya maddeyi daha iyi anlamak için daha küçük parçalara ayırma sürecidir. Teknik, matematik ve mantık çalışmalarında Aristoteles'ten önce uygulanmıştır.

<span class="mw-page-title-main">Bilgisayarlı görü</span> görsellerden veri bilgisi çıkartmak

Bilgisayarlı görü, bilgisayarların dijital görüntülerden veya videolardan nasıl bir anlam kazanabileceğiyle ilgilenen disiplinler arası bilimsel bir alandır. Mühendislik yöntemleriyle, insan görsel sisteminin yapabileceği görevleri anlamaya ve otomatikleştirmeye çalışmaktadır.

Görüntü alma sistemi, geniş bir dijital görüntü veritabanından görüntülere göz atmak, aramak ve almak için kullanılan bir bilgisayar sistemidir. Görüntü almanın en geleneksel ve yaygın yöntemleri, görüntülere resim yazısı, anahtar sözcükler, başlık veya açıklamalar gibi meta veriler eklemeye yönelik bazı yöntemleri kullanır, böylece erişim açıklama sözcükleri üzerinden gerçekleştirilebilir. Görüntüye manuel açıklama eklemek zaman alıcı, zahmetli ve pahalıdır; Bu sorunu çözmek için otomatik görüntü açıklaması üzerine çok sayıda araştırma yapılmıştır. Ek olarak, sosyal web uygulamalarının ve anlamsal webin artması, birçok web tabanlı görsel açıklama aracının geliştirilmesine ilham kaynağı olmuştur.