İçeriğe atla

Özel görelilik tarihi

Özel görelilik kuramı tarihi, birçok teorik sonuçtan ve Albert A. Michelson, Hendrik Lorentz, Henri Poincaré ve diğerleri tarafından elde edilmiş ampirik bulgulardan oluşmaktadır. Tüm bunlar Albert Einstein ve daha sonrasında Max Planck, Hermann Minkowski ve diğerleri tarafından önerilen özel görelilik kuramının bir sonucudur.

Giriş

Isaac Newton fiziği mutlak bir uzay ve zaman üzerine kurulu olmasına rağmen aynı zamanda Galileo Galilei'nin görelilik ilkesiyle bağdaşır. Bu durum şu şekilde ifade edilebilir: mekanik yasaları ile ne kadar ilişkilendirildiğine bağlı olarak eylemsiz hareket eden bütün gözlemciler eşit ayrıcalıklara sahiptir. Ayrıca herhangi bir özel gözlemciye atfedilen hareketin özel olarak seçilmiş bir durumu yoktur. Ancak elektromanyetik teori ve elektrodinamikte olduğu gibi 19. yüzyıl boyunca ışığın dalga teorisi ışık medyumunda meydana gelen bir bozukluk veya Luminiferous ether olarak çoğunlukla kabul görüyordu. Teori en gelişmiş haline James Clerk Maxwell'in çalışmaları neticesinde ulaşmayı başardı. Maxwell'in teorisine göre bütün optik ve elektriksel fenomenler deneysel olarak belirlenebilecek şekilde birbirine göre göreli bir hareket yapmasıyla mümkün olabilmesi gerektiği düşünülen bu medyum boyunca yayılıyordu.

Isaac Newton fiziği mutlak bir uzay ve zaman üzerine kurulu olmasına rağmen aynı zamanda Galileo Galilei'nin görelilik ilkesiyle bağdaşır. Bu durum şu şekilde ifade edilebilir: mekanik yasaları ile ne kadar ilişkilendirildiğine bağlı olarak eylemsiz hareket eden bütün gözlemciler eşit ayrıcalıklara sahiptir. Ayrıca herhangi bir özel gözlemciye atfedilen hareketin özel olarak seçilmiş bir durumu yoktur. Ancak elektromanyetik teori ve elektrodinamikte olduğu gibi 19. yüzyıl boyunca ışığın dalga teorisi ışık medyumunda meydana gelen bir bozukluk veya Luminiferous eter olarak çoğunlukla kabul görüyordu. Teori en gelişmiş haline James Clerk Maxwell'in çalışmaları neticesinde ulaşmayı başardı. Maxwell'in teorisine göre bütün optik ve elektriksel fenomenler deneysel olarak belirlenebilecek şekilde birbirine göre göreli bir hareket yapmasıyla mümkün olabilmesi gerektiği düşünülen bu medyum boyunca yayılıyordu. Eter boyunca yayılan hareketi gözlemlemek için bilinen deneylerin başarısızlığı Hendrik Lorentz tarafından hareketsiz ışık saçan etere (Lorentz bu eterin yapısı hakkında teorik olarak düşünmemiştir), fiziksel uzunluğun kısalmasına ve formunu Maxwell denklemlerindeki yerel zamanın bütün referans sistemlerine göre korunmasına dayanan bir elektromanyetik teori geliştirmek için 1892 yılında başladı. Lorentz’in eter teorisi için birlikte çalıştığı Henri Poincaré henüz gelişmekte olan, 1905 yılında Lorentz’in ön dönüşüm formüllerini düzeltmek için kullanılmış ve şimdi Loretz dönüşüm formülleri olarak bilinen tam bir denklem setinin ortaya çıkmasını sağlamış, doğanın genel bir yasası olarak düşünülebilecek (elektrodinamik ve gravitasyonu içeren) bir özel görelilik prensibi önerdi. Albert Einstein, aynı yıl içerisinde ve kısa bir süre sonra kendisine özgü, ayrıca görelilik prensibine dayanan özel görelilik isimli bir makale yayınladı. Bu makaleyi Einstein, bağımsız bir şekilde türetmişti ve uzay zaman aralığının temel tanımlarını değiştirerek Lorentz dönüşümlerinin temelinden yeniden yorumlamıştı. Bu yorumlama Galilean kinematiğinin mutlak eşzamanlılığına karşı çıkmaya ve bu sebepten dolayı klasik elektrodinamikteki ışık saçan eterin herhangi bir referans noktasını göz ardı etmeye dayanıyordu. Daha sonra ise Hermann Minkowski’nin özel göreliliğin Einstein versiyonu için geliştirdiği 4 boyutlu uzay-zaman geometrisi modeli çalışması Einstein’ın genel görelilik teorisini geliştirmesine büyük bir katkı sağlayacak ve rölativistik alan teorisinin temellerini atacak bir çalışma haline dönecekti.

Eter ve hareketli cisimlerin elektrodinamiği

Eter modelleri ve Maxwell denklemleri

Thomas Young (1804) ve Augustin-Jean Fresnel (1816) yürüttüğü çalışmaların ardından ışığın ışık saçan eter olarak isimlendirilen elastik bir ortamın içinde enine dalgalar olarak yayıldığı düşünülmeye başlandı. Ancak optik ve elektrodinamik fenomenler arasında bir ayrım yapıldı. Bu ayrımın neticesinde bütün doğal fenomenler için özel eter modelleri yaratmak gerekli hale geldi. Bu modelleri birleştirmek veya modellerin tam anlamıyla mekanik bir açıklamasını sunmak için atılan adımlar başarılı olamadı, ancak daha sonra Michael Faraday ve Lord Kelvin’in de içlerinde bulunduğu birçok bilim insanı yadırganamayacak derecede başarılı çalışmalar yaptılar. 1864 yılında James Clerk Maxwell, elektrik, manyetizma ve indüksiyondan türetilen, Maxwell denklemleri olarak anılan bir dizi denklem ile çığır açıcı elektromanyetizma teorisini yarattı. Maxwell, ışığın elektrik ve manyetik fenomenler neticisinde ortaya çıkan aynı eter ortamında bir dalgalanma olduğunu yani elektromanyetik bir radyasyondan kaynaklandığını öne süren ilk kişiydi. Fakat Maxwell’in teorisi hareket eden cisimlerin optiğini düşündüğümüzde başarısız sayılırdı ve tam anlamıyla matematiksel bir model sürebiliyorken, eterin mekanik tutarlılığı hakkında bir fikir sağlayamıyordu.

1887 yılında Heinrich Hertz elektromanyetik dalgaların varlığını gösterdikten sonra Maxwell’in denklemleri geniş bir kitlede saygı duyulur hale geldi. Dahası Oliver Heaviside ve Hertz ayrıca teoriyi geliştirdi ve Maxwell denklemlerinin modern versiyonu için temelleri attı. "Maxwell-Hertz" ya da "Heaviside-Hertz" denklemleri elektrodinamiğin daha da geliştirilmesi için önemli bir temel teşkil ediyordu ve Heaviside'nin notasyanı günümüzde halen kullanılmaktadır. Maxwell denklemlerine yapılan diğer önemli katkılar ise George FitzGerald, Joseph John Thomson, John Henry Poynting, Hendrik Lorentz ve Joseph Larmor tarafından sağlandı.

Eter arayışı

Göreceli hareket ve madde-eter karşılıklı etkileşimi hakkında üzerinde uzlaşılamayan iki farklı teori vardı. Bunlardan biri Fresnel (ve sonrasında Lorentz) tarafından geliştirildi. Hareketsiz Eter Teorisi olarak isimlendirilen bu model ışığın enine bir dalga olarak yayıldığını ve eterin kısmen maddenin sabit bir katsayısıyla birlikte sürüklendiğini varsayıyordu. Fresnel bu varsayıma dayanarak ışığın sapmasını ve birçok optiği içine alan birçok doğal olayı açıklayabiliyordu. Diğer kuram ise 1845 yılında eterin madde tarafından tamamıyla sürüklendiğini belirten (ve daha sonra bu bakış açısı Hertz ile de paylaşılmıştır) George Gabriel Stokes tarafından öne sürüldü. Bu modelde eter hızlı objeler için katı ve yavaş objeler için akışkan (çam zift benzetmesiyle) olabiliyordu. Böylelikle Dünya oldukça özgür bir şekilde hareket edebiliyor ama ışığı taşımak için katı olması gerekiyordu. Fresnel’in teorisi galip geldi çünkü onun sürtünme katsayısı 1851 yılında gerçekleştirilen ışığın sıvı bir ortamdaki hızını ölçmüş Fizeau deneyi ile doğrulanmıştı.

1881 yılında Albert A. Michelson bir girişimölçer kullanarak Fresnel’in teorisinde beklendiği gibi Dünya’nın ve eterin göreceli hareketini ölçmeyi denedi. Michelson herhangi bir göreceli hareket tespit edemedi ve böylece çalışmasını Stokes’in teorisinin bir doğrulaması gibi ifade etti. Ancak 1886 yılında Lorentz Michelson’un hesaplamasının yanlış olduğunu ve ölçümün hassaslığının abartılmış olduğunu gösterdi. Bu büyük bir hata payıyla birlikte Michelson’in deney sonuçlarını ikna edici olmayan bir pozisyona sürükledi. Dahası, Lorentz, Stokes’in tamamıyla sürüklenen eter ortamının tartışmalı sonuçları olduğunu gösterdi ve böylelikle Fresnel’inkine benzer bir şekilde eter teorisini destekledi. Fresnel’in teorisini yeniden kontrol etmek için 1886 yılında Michelson ve Edward W. Morley, Fizeau deneyinin bir tekrarını yaptılar. Bu sayede Fresnel’in sürtünme katsayısı oldukça kesin bir şekilde onaylanmış oldu ve Michelson artık Fresnel’in hareketsiz eter teorisinin doğru olduğunu düşünüyordu. Durumu aydınlığa kavuşturmak için 1887 yılında Michelson ve Morley, Michelson’ın 1881 yılında yaptığı deneyi hassasiyeti olabildiğince arttırmaya çalışarak tekrarladı. Ancak ünlü Michelson ve Morley deneyi yeniden olumsuz bir sonuca perde aralamıştı. Bu olumsuz sonuç keşfedilmeye çalışılan (Dünya’nın kış aylarındaki hızının yaz aylarındaki hızından 60 km/s farklı olmasına rağmen) eter boyunca hareket aparatının olmamasıydı. Böylece fizikçiler iki farklı görünüşe bürünmüş birbiriyle çelişen deneylerle yüzleşmiş oldu: 1886 yılındaki Fresnel’in sabit eter teorisini doğrulayan deney ve 1887 yılındaki Stokes’in tamamıyla sürüklenen eter teorisini onaylayan deney.

Probleme olası bir çözüm 1887 yılında, sıkışmaz elastik ortamda yayılan Doppler kaymasını araştırmış, boş uzayda değişmeden kalabilen dalga denklemlerinin dönüşüm ilişkilerini çıkarmış ve Michelson-Morley deneyinin olumsuz sonuçlarını açıklamış olan Woldemar Voigt tarafından gösterildi. Voigt dönüşümleri y- ve z- koordinatları için Lorentz faktörünü ve daha sonra yerel zaman olarak isimlendirilecek olan yeni bir zaman değişkenini içeriyordu. Ancak, Voigt’in çalışması çağdaşları tarafından tamamen görmezden gelindi.

1889 yılında FitzGerald Michelson-Morley deneyinin olumsuz sonuçlarının açıklanması için farklı bir açıklama sundu. Voigt’in aksine Gerald, kuramsal olarak malzeme yüzeylerinin hareket doğrultusu boyunca kısalacağından dolayı (uzunluk kısalması), moleküller arası kuvvetlerin elektriksel kökenli olabileceği öne sürdü. Bu 1887 yılında, hareket halindeki elektrostatik alanın ışık hızında belirlenemeyen fiziksel koşullar sebebiyle deforme olduğunu gösteren Heaviside’nin çalışması (Heaviside Elipsoidi) ile bağlantılıydı. Ancak, FitzGerald'ın fikri uzun bir süre bilinmez halde kaldı ve Oliver Lodge 1892 yılında bu fikir hakkında bir özet yayınlayana kadar hiç tartışılmadı. Ayrıca Lorentz, yine 1892 yılında Michelson-Morley deneyini açıklamak amacıyla FitzGerald'dan bağımsız bir şekilde uzunluk kısalmasını önerdi. Makul sebeplerden dolayı Lorentz bu durumu elektrostatik alanların büzülmesine bağlıyordu ve konu hakkında bir benzetme sundu. Ancak Lorentz bile bunun yeterli bir sebep olmadığını ve ad hoc hipotezinin sonuç olarak uzunluk kısalması olarak kaldığını kabul etti.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

<span class="mw-page-title-main">Özel görelilik</span> izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir

Fizikte, özel görelilik teorisi veya izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir. Albert Einstein'ın orijinal çalışmalarında teori, iki varsayıma dayanmaktadır:

  1. Fizik yasaları, tüm süredurum referans çerçevelerinde değişmezdir.
  2. Işık kaynağının veya gözlemcinin hareketinden bağımsız olarak vakumdaki ışığın hızı, tüm gözlemciler için aynıdır.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Elektromanyetizma</span> elektrikle yüklü parçacıklar arasındaki etkileşime neden olan fiziksel kuvvet

Elektromanyetizma, elektrikle yüklü parçacıklar arasındaki etkileşime neden olan fiziksel kuvvet'tir. Bu etkileşimin gerçekleştiği alanlar, elektromanyetik alan olarak tanımlanır. Doğadaki dört temel kuvvetten biri, elektromanyetizmadır. Diğer üçü; güçlü etkileşim, zayıf etkileşim ve kütleçekim kuvvetidir.

<span class="mw-page-title-main">Hendrik Lorentz</span> Hollandalı fizikçi (1853–1928)

Hendrik Antoon Lorentz, Hollandalı fizikçidir. Zeeman etkisini aydınlattığı için 1902 Nobel Fizik Ödülü'nü Pieter Zeeman ile paylaştı.

<span class="mw-page-title-main">Teorik fizik</span> fizik biliminin bir branşı

Teorik fizik, fiziğin matematiksel modellemeler ve fiziksel nesnelerin soyutlandırılmaları çalışmaları ve doğa olaylarını açıklayan, gerçekselleştiren ve tahmin yürüten fizik dalıdır. Bu deneysel fiziğin zıttıdır ki deneysel fizik araçlarla bu olayları soruşturur.

<span class="mw-page-title-main">Michelson-Morley deneyi</span> Maddenin göreceli hareketini gözlemek için sabit ışık saçan eter ile yapılmış bir deney

Michelson–Morley deneyi, fizik tarihinin en önemli ve ünlü deneylerinden biridir. 1887'de Albert Michelson ve Edward Morley tarafından Case Western Reserve University'de yapılan deney genel olarak eter teorisine karşı en büyük kanıt olarak düşünülür. Albert Michelson özellikle bu çalışması için 1907'de Nobel Fizik Ödülü'nü aldı. Deneyin asıl amacı Ether maddesinin var olduğunu deneysel olarak kanıtlamaktı. Amacın olumlu yönde olmasına rağmen deney olumsuz sonuçlandı. Eğer böyle bir madde olsaydı içinde bulunan her şeyi etkilerdi.

<span class="mw-page-title-main">Görelilik ilkesi</span> Fizik yasalarının tüm referans çerçevelerinde aynı olması gerektiğini belirten fizik ilkesi

Görelik teorisi ya da basitçe fizikte görelilik genellikle Albert Einstein'ın iki teorisini kapsar. Bunlar özel görecelik ve genel göreceliktir.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

<span class="mw-page-title-main">Işık hızı</span> elektromanyetik dalgaların boşluktaki hızı

Işığın boşluktaki hızı, fiziğin birçok alanında kullanılan önemli bir fiziksel sabittir. Genellikle c sembolüyle gösterilir. Tam değeri saniyede 299.792.458 metredir. Metrenin uzunluğu bu sabitten ve uluslararası zaman standardından hesaplanmıştır. Özel göreliliğe göre c, evrendeki bütün madde ve bilgilerin hareket edebileceği maksimum hızdır. Bütün kütlesiz parçacıkların ve ilgili alanlardaki değişimlerin boşluktaki hareket hızıdır. Bu parçacıklar ve dalgalar gözlemcinin eylemsiz referans çerçevesi ya da kaynağın hareketi ne olursa olsun c'de hareket ederler. Görelilik teorisi'nde c, uzay-zaman arasındaki ilişkiyi kurar; aynı zamanda meşhur kütle-enerji eşdeğerliliği formülünde de gözükür E = mc2. Işığın hava veya cam gibi şeffaf maddelerdeki ilerleyiş hızı c'den azdır. Benzer şekilde radyo dalgalarının tel kablolardaki ilerleyişi de c'den yavaştır. Işığın madde içindeki hızı v ile c arasındaki orana o maddenin kırılma endeksi denir. Örneğin, görülebilir ışık için camın kırılma endeksi genellikle 1,5 civarındadır. Yani ışık camın içinde c / 1,5 ≈ 200.000 km/s ile hareket eder. Hangi açıdan bakılırsa bakılsın ışık ve öteki elektromanyetik dalgalar anında yayılıyormuş gibi gözükür ancak, ölçülebilir hızlarının uzun mesafeler ve hassas ölçümlerle ölçülebilir sonuçları vardır. Uzaydaki keşif araçlarıyla iletişim kurarken mesajların Dünya'dan uzay aracına ya da uzay aracından Dünya'ya ulaşması dakikalar ya da saatler alabilir. Yıldızlardan gelen ışık onları yıllar önce terk etmiştir ve bu sayede uzaktaki nesnelere bakarak evrenin tarihini çalışma şansı verir. Işığın ölçülebilir hızı aynı zamanda bilgisayardaki bilgilerin çipler arasında aktarılması gerektiği için bilgisayarların teorik hızını da sınırlar. Işık hızı, uzak mesafeleri yüksek isabetle ölçebilmek için uçuş zamanı ölçümlerinde de kullanılır.

Modern fizik, klasik fizik ile tanımlanamayan olayları açıklamak üzere ortaya atılmış teorilerin tümüdür. Einstein'ın özel görelilik kuramından, Max Planck'ın kara cisim ışıması kuramına; Schrödinger'in kedisinden, kuark ve bozonlara kadar her şey modern fizik adı altında buluşur.

<span class="mw-page-title-main">Klasik fizik</span> fizik dalı

Klasik fizik tamamlanmış veya uygulanabilir olan fiziğin, eski tarihlerde düşünülmüş modern teorilerle ilgilenir. Şu an kabul edilmiş bir teori modern sayılıyorsa ve o teorinin giriş cümlelerinde başlıca paradigma değişiminden bahsediliyorsa, eski teorilere genellikle “klasik” denilir. Bir klasik teorinin tanımı aslında içeriğine bağlıdır. Klasik fizik kavramı, modern fizik için fazlasıyla karmaşık olan belirli durumlarda kullanılır.

Fizikteki eter teorileri, eterin ortamın varlığı için gerekli olan boşluk doldurucu ve elektromanyetizma veya kütleçekim kuvvetlerinin yayılması için gerekli olduğu madde olduğunu öne sürmektedir. Çeşitli eter teorileri ortam ve madde konularını somutlaştırmaktadır. Bu erken zamanın modern eteri adını aldığı klasik elementle çok az ortak özelliğe sahiptir. Özel göreliliğin gelişiminden sonra eter teorisi artık modern fizikte kullanılmamaktadır ve yerini daha soyut modeller almıştır.

19. yüzyılda, ışığın yayılması için varsayımsal aracı olarak esîr teorisi yaygın olarak tartışıldı. Bu tartışmanın önemli bir parçası, bu ortama göre Dünya'nın hareket durumu ile ilgili soru oldu. Esîr çekim hipotezi esîrin hareket eden madde tarafından çekildiği ya da birlikte sürüklendiği ile ilgilenir. İlk değişkene göre Dünya ve esîr arasında bağıl bir hareket yoktur; ikinciye göre bağıl hareket vardır ve böylece ışık hızı, Dünya yüzeyinde ölçülen hareket hızına("esîr rüzgarı") dayanır. Özgül esîr modellerini bulan Augustin-Jean Fresnel tarafından 1818 yılında esîrin maddeyle beraber sürüklendiğini önermiştir. Diğer model George Stokes tarafından 1845 yılından ortaya atılan esîrin maddenin içinde ya da civarında sürüklenmesidir.

<i>Annus Mirabilis</i> makaleleri Einstein tarafından yayımlanan bazı makaleler

Annus Mirabilis makaleleri, Albert Einstein tarafından 1905 yılında Annalen der Physik bilim dergisinde yayınlanan makalelerdir. Bu dört makale modern fiziğin temelinin oluşturulmasına büyük ölçüde katkıda bulunmuş ve uzay, zaman, kütle ve enerji üzerindeki görüşleri değiştirmiştir. Annus Mirabilis, İngilizcede Miracle Year veya Almancada Wunderjahr olarak adlandırılır ve mucize yıl anlamına gelir.

Yerçekimi hızı, yerçekiminin klasik teorilerinde yerçekimi hızı, yerçekimsel alanın yayılmasıyla değişen hız olarak tanımlanmıştır. Yerçekimi hızı, enerji dağılımındaki ve maddenin momentumundaki değişimin belli bir uzaklıkta, ürettiği yerçekimsel alanda sonradan ortaya çıkan bir değişiklikle sonuçlandığı hızdır. Fiziksel olarak daha doğru bir yaklaşımla, "yerçekimi hızı" yerçekimsel dalganın hızını kasteder.

Genel görelilik, Albert Einstein tarafından 1907-1915 yılları arasında geliştirilmiş ve 1915’ten sonra da genel göreliliğe pek çok kişi tarafından katkıda bulunulmuştur. Genel göreliliğe göre, kütleler arasında gözlemlenen kütlesel çekim kuvveti, bu kuvvetlerin uzay ve zamanı bükmesinden kaynaklanmaktaydı. 

Emisyon teorisi, diğer adlarıyla emitör teorisi veya ışığın balistik teorisi 1887'deMichelson-Morley deneyinin sonuçlarını açıklayan, özel izafiyet teorisine rakip bir teoriydi. Emisyon teorileri ışık iletimi için belirli bir çerçevesi olmadığından izafiyet yasalarına uyar, fakat değişmezlik esasını uygulamak yerine ışığın kaynağına bağlı olarakc hızında yayıldığını söyler. Böylece emitör teorisi elektrodinamik ve mekaniği basit bit Newton teorisi ile kombine eder. Temel bilimsel görüşün dışında hala yanlıları olsa da, bu teori bilim adamlarının çoğunluğu tarafından kesinlikle gözden düşmüş sayılmaktadır.

<span class="mw-page-title-main">Görelilik teorisi</span> zamanın göreceli olduğunu söyleyen teori

Görelilik teorisi, Albert Einstein'ın çalışmaları sonucu önerilen ve yayınlanan, özel görelilik ve genel görelilik adlarında birbirleriyle ilişkili iki teorisini kapsar. Özel görelilik, yer çekiminin yokluğunda tüm fiziksel fenomenler için geçerlidir. Genel görelilik, yer çekimi yasasını ve bu yasanın diğer doğa kuvvetleri ile ilişkisini açıklar. Astronomi de dahil olmak üzere kozmolojik ve astrofiziksel alem için geçerlidir.

Fizikte, yerellik ilkesi, bir nesnenin yalnızca yakın çevresinden doğrudan etkilendiğini belirtir. Yerellik ilkesini içeren bir teorinin "yerel teori" olduğu söylenir. Bu, anlık veya uzaktan "yerel olmayan" eylem kavramına bir alternatiftir. Yerellik, klasik fiziğin alan teorilerinden gelişti. Buradaki fikir, bir noktadaki bir nedenin başka bir noktada bir etkiye sahip olması için, bu noktalar arasındaki boşluktaki bir şeyin eyleme aracılık etmesi gerektiğidir. Bir etki uygulamak için, dalga veya parçacık gibi bir şey, iki nokta arasındaki boşluktan geçerek etkiyi taşımalıdır.