İçeriğe atla

Özel fonksiyonlar

Özel fonksiyonlar, matematiksel analiz, fonksiyonel analiz ve fizikte belirli bir kullanımı olan ve genellikle litaratüre kazandıran bilim adamının adıyla anılan fonksiyonlardır.

Bir fonksiyonun özel olarak adlandırılması için kabul görmüş genel bir tanımlama yoktur. Ancak pek çok özel fonksiyon fizikte karşılaşılan diferansiyel denklemlerin çözümleriyle ilişkilidir.

Örnek özel fonksiyonlar

Aşağıda birkaç özel fonksiyon listelenmiştir:

Ayrıca bakınız

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Polinom</span> değişkenlerin çarpımlarının toplamı, değişkenlerin gücü ve katsayılar

Matematikte, bir polinom belirli sayıda bağımsız değişken ve sabit sayıdan oluşan bir ifadedir. Polinom kendi içinde toplama, çıkarma, çarpma ve negatif olmayan sayının üssünü alma işlemlerini kullanır. Örnek olarak tek bilinmeyenli bir polinom olan x2 − 4x + 7, ikinci dereceden oluşan bir polinomdur. Diğer bir örnek olarak, x2 − 4/x + 7x3/2 bir polinom değildir, çünkü polinomlarda terimlerin derecelerinin doğal sayı olma zorunluluğu vardır 2. terimde x′i ele alan bir bölme işlemi x'in derecesini negatif yapmaktadır ve 3. terim doğal sayı olmayan bir derece içermektedir (3/2).

Matematiksel analiz, hesaplamanın esas olduğu matematiğin en önemli kolu. Limit kavramı üzerine kurulmuştur. Eğri, yüzey ve fizik problemlerini bünyesine alarak gelişti. Bu tür konular, özel veya farklı değer kümeleriyle meşgul olan cebir ve aritmetiğin dışındaki problemlerdir. Bununla beraber, sonsuz kümelerin limit değerlerini kural haline getirme işlemlerini ihtiva ederler.

<span class="mw-page-title-main">Taylor serisi</span>

Taylor serisi matematikte, bir fonksiyonun, o fonksiyonun terimlerinin tek bir noktadaki türev değerlerinden hesaplanan sonsuz toplamı şeklinde yazılması şeklindeki gösterimi/açılımıdır. Adını İngiliz matematikçi Brook Taylor'dan almıştır. Eğer seri sıfır merkezli ise, Taylor serisi daha basit bir biçime girer ve bu özel seriye İskoç matematikçi Colin Maclaurin'e istinaden Maclaurin serisi denir. Bir serinin terimlerinden sonlu bir sayı kadarını kullanmak, bu seriyi bir fonksiyona yakınsamak için genel bir yöntemdir. Taylor serisi, Taylor polinomunun limiti olarak da görülebilir.

Matematikte, Laplace dönüşümü, zaman tanım kümesinde tanımlı bir fonksiyonu, frekans tanım kümesinde tanımlı bir başka fonksiyona dönüştürmek amacıyla kullanılır.

<span class="mw-page-title-main">Kalkülüs</span>

Başlangıçta sonsuz küçük hesap veya "sonsuz küçüklerin hesabı" olarak adlandırılan kalkülüs, geometrinin şekillerle çalışması ve cebirin aritmetik işlemlerin genellemelerinin incelenmesi gibi, kalkülüs sürekli değişimin matematiksel çalışmasıdır.

Gerçel fonksiyonlar, matematiksel analizin özellikle reel analizin klasikleşmiş nesneleridir.Bu bağlamda, gerçek değerli bir fonksiyonun aynı zamanda tanım kümesini gerçek sayıların oluşturduğu gerçek değerli fonksiyon anlamına geldiği söylenebilir.Ancak, Fourier Analizinde olduğu gibi, kimi zaman tanım kümesi reel olup, görüntü kümesi karmaşık sayılardan oluşan kompleks fonksiyonların da gerçek değişken kabul edildiği olur.

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

Karmaşık analizde, tam fonksiyon veya başka bir deyişle integral fonksiyonu, karmaşık düzlemin tümünde holomorf olan karmaşık değerli bir fonksiyondur. Tam fonksiyonların tipik örnekleri polinomlar, üstel fonksiyon ve bunların toplamları, çarpımları ve bileşkeleridir. Her tam fonksiyon tıkız kümeler üzerinde düzgün bir şekilde yakınsayan kuvvet serileri ile temsil edilebilir. Doğal logaritma ya da karekök fonksiyonu tam bir fonksiyona uzatılamaz.

Gerçel analiz ya da bilinen diğer ismiyle reel analiz, matematiksel analizin bir dalıdır. Bu dal, gerçek sayılar ve bu sayılardan türetilen yapılarla ilgili temel kavramları ele alır. Ana konuları arasında diziler, seriler, limitler, süreklilik, türev, integral ve fonksiyon dizileri yer alır. Gerçek analizin incelenmesi, matematiğin diğer alanları için temel araçlar ve yöntemler sağlar.

Matematiksel fizik, matematik ve fizik arasındaki alakayla ilgilinen bilimsel disiplindir. Matematiksel fiziğin neyi içerip içermediği ile ilgili tam bir mutabakat yoktur. Ancak Journal of Mathematical Physics konuyla ilgili bir tanım yapar: Matematiğin fiziksel sorunlara uygulanması ve fiziksel kuramlar için matematiksel yöntemlerin uygunluğunun geliştirilmesi.

Matematikte, birkaç fonksiyon ya da fonksiyon gruplarının kendi isimleri yeterli öneme layıktır. Bu makaleler fonksiyonları açıklamak için olan daha ayrıntılı olarak gösteren bir listedir. İstatistik dışı ve matematiksel fizik gelişmeleri sonucu özel fonksiyonlar büyük bir teori olmuştur. Modern bir, soyut incelik fonksiyon uzayıları geniş karşılaştırma görünümü, sonsuz-boyutlu ve 'isimsiz' fonksiyonlar içindeki ve simetri ya da ilişki harmonik analiz ve grup temsilileri gibi özellikler ile özel fonksiyonlar ile seçilmiştir.

<span class="mw-page-title-main">Laguerre polinomları</span>

Laguerre polinomları, matematikte adını Edmond Laguerre'den almıştır. Kanonik (benzer) adlandırma Laguerre denklemi'dir:

Matematiğin bir alt dalı olan karmaşık analizde, holomorf bir f fonksiyonunun sıfırı veya kökü f(a) = 0 eşitliğini sayılan karmaşık a sayısına verilen bir addır. Başka bir deyişle, holomorf fonksiyonların sıfır değerini aldığı karmaşık sayılara o fonksiyonun sıfırları adı verilir.

<span class="mw-page-title-main">Lebesgue integrali</span>

Matematikte Lebesgue entegrasyonu bir fonksiyonun entegrasyonunun genel teorisi için genel bir ölçü ile ilgili bir işlev, gerçek hat veya Lebesgue ölçümü bakımından daha yüksek boyutlu Öklid uzayının bir alt etki alanı ile tanımlanan bütünleşme özel durum anlamına gelir. Lebesgue entegrasyonu gerçek analizde önemli bir rol oynar, olasılık aksiyomatik teorisi ve matematik bilimleri için birçok diğer alanlardaki hesaplamalara yardımcı olur.

Matematiksel model, bir sistemin matematiksel kavramlar ve dil kullanılarak tanımlanmasıdır. Matematiksel model geliştirme süreci, matematiksel modelleme olarak adlandırılır. Matematiksel modeller, doğa bilimlerinde ve mühendislik disiplinlerinde bunun yanı sıra sosyal bilimlerde kullanılır. Matematiksel modelleri daha çok fizikçiler, mühendisler, istatistikçiler, operasyon araştırma analistleri ve ekonomistler kullanır. Model, bir sistemi açıklamaya, farklı bileşenlerin etkilerini incelemeye ve bir davranış hakkında öngörüde bulunmak için yardımcı olabilir.

<span class="mw-page-title-main">Nyquist’i̇n kararlılık kriteri</span>

Nyquist'in kararlılık kriteri, Bell Telefon Laborauarlarında çalışan İsveç kökenli Amerikan bir elektrik mühendisi olan Harry Nyquist Bell tarafından 1932 yılında keşfedilen, bir dinamik sistemin kararlılığını araştırmaya yarayan bir yönteme ‘’’Nyquist'in Kararlılık Şartları’ denir. Bu kriter Kararlılık teorisinde ve Kontrol teorisinde kullanılmaktadır. Bu metodu uygulayabilmek için yalnızca açık sistem fonksiyonunun Nyquist grafiğini bilmek gerektiğinden, kapalı yahut açık sistemin kutup ve sıfırları tam olarak bilinmese dahi bu yöntem uygulanabilir. Diğer bir ifadeyle bu yöntemin uygulanabilmesi için sistemin matematiksel modeli bilinmesine gerek yoktur; sistemin sadece frekans cevabı kullanılarak kararlılığına Nyquist metoduyla bakılabilir. Dolayısıyla sağ yarı düzlemde tekillik olan transfer fonksiyonlarına hatta rasyonel olmayan transfer fonksiyonlarına bu yöntem uygulanabilir. Üstelik bu yöntem çok giriş çıkışlı sistemler üzerinde kullanılacak şekilde genellenebilir.

Yunan harfleri; matematikte, bilimde ve mühendislikte ayrıca sabitler ve özel fonksiyonlar için sembollerle matematiksel notasyonun yapıldığı her yerde, özellikle belirli nicelikleri temsil eden değişkenler için kullanılır. Bu bağlamda, büyük ve küçük harfler farklı ve alakasız şeyleri simgelerler. Latin harfi biçimindeki Yunan harfleri genellikle kullanılmazlar: büyük A, B, E, H, I, K, M, N, O, P, T, X, Y, Z gibi. "i, o ve u" Latin harflerine yakından benzediklerinden, küçük ι (iota), ο (omikron) ve υ (ipsilon) nadiren kullanılır. Bazen Yunan harflerinin değişik fontları matematikte bambaşka semboller için kullanılır, özellikle de φ (fi) ve π (pi).

Zaman etki alanı; ekonomik veya çevresel verilerin matematiksel fonksiyonlarının, fiziksel sinyallerinin veya zaman serilerinin zamana göre analizi.

Trigonometri, üçgenlerdeki kenarlar ve açılar arasındaki ilişkileri inceleyen bir matematik dalıdır. Trigonometri, bu ilişkileri tanımlayan ve dalgalar gibi döngüsel fenomenlere uygulanabilirliği olan trigonometrik fonksiyonları tanımlar.