Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.
Koşullu olasılık kavramı, bir olayın gerçekleşme olasılığının hesaplanmasında ek bilginin kullanılmasına olanak tanır. Örneğin bir kişinin iki çocuğu olduğunu düşünürsek, her ikisinin de kız olma olasılığı 1/4 olur. Ancak birinin kız olduğunu önceden bilirsek, bu olasılık 1/3 olarak değişir. Ama herhangi biri değil de birincisi kız olduğu biliniyorsa olasılık 1/2 olur. Yani bu iki durumda, her iki çocuğun da kız olma olasılığı, birinin kız olması koşullu olarak hesaplanır.
Elektriksel güç, elektrik enerjisinde elektrik devresi tarafından taşınan güç olarak tanımlanır. Gücün SI birimi watt'tır. Elektrikli cihazların birim zamanda harcadığı enerji miktarı olarak da bilinir. 1 saniyede 1 joule enerji harcayan elektrikli alet 1 watt gücündedir.
Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.
Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.
Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:
- Bütün tam sayılar setine, yani { 1, 2, 3, .... } üzerine, bağlı olarak X sayıda Bernoulli denemesinde ilk başarıyı elde etmenin olasılık dağılımı; veya
- Bütün tam sayılar setine, yani {1, 2,3, ....} üzerine, bağlı olarak ilk başarıyı elde etmeden Y = X − 1 başarısızlık sayısı olasılık dağılımı.
Olasılık kuramı ve istatistik bilim dallarında negatif binom dağılım bir ayrık olasılık dağılım tipi olup Pascal dağılımı ve Polya dağılımı bu dağılımın özel halleridir.
Olasılık kuramı ve istatistikte, beta dağılımı, [0,1] aralığında iki tane pozitif şekil parametresi ile ifade edilmiş bir sürekli olasılık dağılımları ailesidir. Çok değişkenli genellemesi Dirichlet dağılımıdır.
Olasılık kuramı ve istatistik bilim kollarında, multinom dağılımı binom dağılımının genelleştirilmesidir.
Olasılık kuramı ve bir dereceye kadar istatistik bilim dallarında basıklık kavramı 1905da K. Pearson tarafından ilk defa açıklanmıştır. Basıklık kavramı bir reel değerli rassal değişken için olasılık dağılımının, grafik gösteriminden tanımlanarak ortaya çıkarılan bir kavram olan, sivriliği veya basıklığı özelliğinin ölçümüdür. Basıklık kavramının ayrıntıları olasılık kuramı içinde geliştirilmiştir. Betimsel istatistik için bir veri setinin basıklık karakteri pek dikkate alınmayan bir özellik olarak görülmektedir. Buna bir neden parametrik çıkarımsal istatistik alanında basıklık hakkında hemen hemen hiçbir kestirim veya sınama bulunmamasındandır ve pratik istatistik kullanımda basıklık pek önemsiz bir karakter olarak görülmektedir. Belki de basıklık ölçüsünün elle hesaplanmasının hemen hemen imkânsızlığı buna bir neden olmuştur.
Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.
Bayes teoremi, olasılık kuramı içinde incelenen önemli bir konudur. Bu teorem bir rassal değişken için olasılık dağılımı içinde koşullu olasılıklar ile marjinal olasılıklar arasındaki ilişkiyi gösterir. Bu şekli ile Bayes teoremi bütün istatistikçiler için kabul edilir bir ilişkiyi açıklar. Bu kavram için Bayes kuralı veya Bayes savı veya Bayes kanunu adları da kullanılır.
Özgüllük veya spesifite biyoistatistikte kullanılan bir terim; bir testin, sağlamlar içinden gerçek sağlamları ayırma yeteneğini gösterir.
Duyarlılık veya sensitivite biyoistatistikte kullanılan bir terim; bir testin, hastalar içinden gerçek hastaları ayırma yeteneğini gösterir.
Güven aralığı, istatistik biliminde bir anakütle parametresi için bir çeşit aralık kestirimi olup bir çıkarımsal istatistik çözüm aracıdır. Bir anakütle parametre değerinin tek bir sayı ile kestirimi yapılacağına, bu parametre değerini kapsayabilecek iki sayıdan oluşan bir aralık bulunur. Böylece güven aralıkları bir kestirimin ne kadar güvenilir olduğunu gösterir.
Mühendislik, endüstri ve istatistikte, bir ölçüm sisteminin doğruluğu, bir niceliğin ölçüm değerinin asıl (gerçek) değerine olan yakınlık derecesidir. Bir ölçüm sisteminin kesinliği, aynı şartlardaki ölçümlerin aynı sonucu verme derecesidir. Gündelik dilde iki terim eş anlama gelebilmekteyse de bilimsel yöntemde ikisi özellikle ayrı ayrı kullanılımaktadır.
Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.
Naïve Bayes sınıflandırıcı, örüntü tanıma problemine ilk bakışta oldukça kısıtlayıcı görülen bir önerme ile kullanılabilen olasılıksal bir yaklaşımdır. Bu önerme, örüntü tanımada kullanılacak her bir tanımlayıcı öznitelik ya da parametrenin istatistik açıdan bağımsız olması gerekliliğidir. Her ne kadar bu önerme Naive Bayes sınıflandırıcının kullanım alanını kısıtlasa da istatistik bağımsızlık koşulu esnetilerek kullanıldığında da daha karmaşık yapay sinir ağları gibi metotlarla karşılaştırabilir sonuçlar vermektedir. Bir Naive Bayes sınıflandırıcı, her özniteliğin birbirinden koşulsal bağımsız olduğu ve öğrenilmek istenen kavramın tüm bu özniteliklere koşulsal bağlı olduğu bir Bayes ağı olarak da düşünülebilir.
Temel oran ihmali, temel oran yanılgısı, temel oran yanlılığı olarak da adlandırılabilen temel oran safsatası, biçimsel bir mantık safsatasıdır. Konuyla ilgili temel oran bilgisi, daha spesifik başka bilgilerle birlikte verildiğinde insan aklı, temel oran bilgisini ihmal edip sadece spesifik bilgilere odaklanarak çıkarım yapma eğilimindedir. Temel oran ihmali, daha genel olan genişleme ihmalinin özel bir biçimidir.
Bayesci istatistik, Bayesyen istatistik veya Bayesgil istatistik, olasılığın bir olaya olan inancın bir derecesini ifade ettiği Bayesci olasılık yorumuna dayanan istatistik alanındaki bir teoridir. İnanç derecesi, önceki deneylerin sonuçları gibi olay hakkında önceki bilgilere veya olayla ilgili kişisel inançlara dayanabilir. Bu, olasılığı birçok denemeden sonra bir olayın göreceli sıklığının sınırı olarak gören sıklıkçı olasılık yorumlaması gibi bir dizi başka olasılık yorumundan farklıdır.