İçeriğe atla

Çubuk hücreleri

Çubuk hücreleri
Retina kesiti. Çubuk hücreleri en sağda.
Kaynak yapı Retina


Çubuk hücreleri, gözün retinasında bulunan ve diğer görsel fotoreseptör tipi olan koni hücrelerinden daha düşük ışıkta daha iyi işlev görebilen fotoreseptör hücrelerdir. Çubuklar genellikle retinanın dış kenarlarında konsantre olarak bulunur ve çevresel görüşte kullanılır. Ortalama olarak, insan retinasında yaklaşık 92 milyon çubuk hücre vardır.[1] Çubuk hücreler, koni hücrelerden daha hassastır ve gece görüşünden neredeyse tamamen sorumludur. Bununla birlikte, çubuk hücrelerinin renk görmede çok az rolü vardır, bu da renklerin loş ışıkta daha az belirgin olmasından kaynaklanmaktadır.

Yapısı

Çubuklar, koni hücrelerinden biraz daha uzun ve daha incedir ancak aynı temel yapıya sahiptir. Opsin içeren diskler, hücrenin sonunda gözün iç kısmına bağlı olan retina pigment epiteline bitişiktir. Hücrenin dedektör kısmının istiflenmiş disk yapısı çok yüksek verim sağlamaktadır. Çubuklar, 6 ila 7 milyon koni hücresine kıyasla yaklaşık 120 milyon çubuk hücre ile konilerden çok daha fazladır.[2]

Koniler gibi, çubuk hücrelerin de sinaptik bir terminali, bir iç segmenti ve bir dış segmenti bulunmaktadır. Sinaptik terminal, genellikle bir bipolar hücre veya yatay bir hücre olan başka bir nöronla bir sinaps oluşturur. İç ve dış segmentler,[3] distal segmenti kaplayan bir siliyer ile bağlanmaktadır.[4] İç kısım, organelleri ve hücre çekirdeğini içerirken, gözün arkasına doğru işaret edilen çubuk dış segmenti, ışığı soğuran malzemeleri içermektedir.[3]

Bir insan çubuk hücresi yaklaşık 2 mikron çapında ve 100 mikron uzunluğundadır.[5] Çubukların tümü morfolojik olarak aynı değildir; farelerde, dış pleksiform sinaptik katmana yakın çubuklar, kısaltılmış bir sinaptik terminal nedeniyle azaltılmış bir uzunluk sergilemektedir.[6]

Fonksiyonları

Fotoreseptörler

Çubuk hücresinin anatomisi[7]

Omurgalılarda, bir fotoreseptör hücresinin aktivasyonu, hücrenin bir hiperpolarizasyonudur (inhibisyonudur). Karanlıkta olduğu gibi, uyarılmadıklarında, çubuk hücreler ve koni hücreleri depolarize olur ve kendiliğinden bir nörotransmitter salgılamaktadırlar. Bu nörotransmitter, bipolar hücreyi hiperpolarize eder. Bipolar hücreler, fotoreseptörler ve ganglion hücreleri arasında bulunur ve fotoreseptörlerden gangliyon hücrelerine sinyal iletmek için hareket etmektedir. Bipolar hücrenin hiperpolarize olması sonucunda, bipolar ganglion sinapsı vericisini serbest bırakmaz ve sinaps uyarılmaz.

Işıkla fotopigmentlerin aktivasyonu, çubuk hücreyi hiperpolarize ederek bir sinyal göndermektedir. Bu durum çubuk hücrenin nörotransmitterini göndermemesini sağlamaktadır. Bipolar hücre oluşur. Ardından vericisini bipolar ganglion sinapsında serbest bırakır ve sinapsı harekete geçirir.

Çubuk hücrelerin depolarizasyonu, nörotransmitterlerin salınımına neden olur. Çünkü karanlıkta hücreler, iyon kanallarını açan, büyük ölçüde sodyum kanalları, ancak kalsiyum içeri girebilse de, nispeten yüksek halkalı guanozin 3'-5' monofosfata (cGMP) sahiptir. Elektrokimyasal gradyanı boyunca hücreye giren iyonların pozitif yükleri hücrenin zar potansiyelini değiştirir, depolarizasyona neden olur ve nörotransmiter glutamat salınımına yol açmaktadır. Glutamat, bazı nöronları depolarize edebilir ve diğerlerini hiperpolarize ederek fotoreseptörlerin antagonistik bir şekilde etkileşime girmesine izin verebilir.

Işık, fotoreseptör hücre içindeki fotoreseptif pigmentlere çarptığında, pigment şekil değiştirir. Rodopsin (conopsin koni hücrelerinde bulunur) adı verilen pigment, opsin adı verilen plazma zarında yer alan büyük bir protein içermektedir. Buna kovalent olarak bağlı bir prostetik grup bağlanmaktadır: retinal adı verilen organik bir molekül (A vitamininin bir türevi). Retina, karanlıkta 11-cis-retinal formda bulunmaktadır ve ışıkla uyarım, yapısının all-trans-retinal olarak değişmesine neden olmaktadır. Bu yapısal değişiklik, transducin (bir tür G proteini) adı verilen düzenleyici bir protein için artan bir yakınlığa neden olmaktadır. Rodopsine bağlandıktan sonra, G proteininin alfa alt birimi, bir GDP molekülünün yerine bir GTP molekülü koyar ve aktive olur. Bu yer değiştirme, G proteininin alfa alt biriminin, G proteininin beta ve gama alt birimlerinden ayrılmasına neden olmaktadır. Sonuç olarak, alfa alt birimi artık cGMP fosfodiesteraza (bir efektör protein) bağlanmak için serbesttir.[8] Alfa alt birimi, inhibitör PDE gama alt birimleri ile etkileşime girer. Bunların PDE'nin alfa ve beta alt birimleri üzerindeki katalitik bölgeleri bloke etmelerini önlemektedir. cGMP'yi (ikinci haberci) hidrolize eden ve onu 5'-GMP olarak parçalayan cGMP fosfodiesterazın aktivasyonuna yol açmaktadır. cGMP'deki azalma, iyon kanallarının kapanmasına, pozitif iyonların akışının önlenmesine, hücrenin hiperpolarize edilmesine ve nörotransmiter glutamat salınımının durdurulmasına izin vermektedir. Koni hücreleri esas olarak nörotransmiter madde asetilkolini kullanmasına rağmen, çubuk hücreler çeşitli şekilde kullanmaktadır. Işığın duyusal bir tepkiyi başlattığı sürecin tamamına görsel fototransdüksiyon denilmektedir.

Çubuklardaki ışığa duyarlı pigment olan tek bir rodopsin biriminin aktivasyonu, sinyal güçlendirildiği için hücrede büyük bir reaksiyona yol açabilmektedir. Aktive edildiğinde, rodopsin yüzlerce transdusin molekülünü aktive edebilir ve bunların her biri sırayla saniyede binden fazla cGMP molekülünü parçalayabilen bir fosfodiesteraz molekülünü aktive eder. Bu nedenle, çubuklar az miktarda ışığa büyük bir tepki verebilir.

Rodopsinin retinal bileşeni A vitamininden türetildiği için, A vitamini eksikliği çubuk hücrelerin ihtiyaç duyduğu pigmentte bir eksikliğe neden olmaktadır. Sonuç olarak, daha az çubuk hücresi, daha karanlık koşullarda yeterince tepki verebilir ve koni hücreleri karanlıkta görmeye yetersiz şekilde adapte olduğundan, körlüğe neden olabilir. Buna gece körlüğü denir.

Dinlenme durumu

Çubuklar, bir ışık parlamasından sonra dinlenme durumuna hızlı bir şekilde geri dönmeyi sağlamak için üç engelleyici mekanizmadan (negatif geri besleme mekanizmaları) yararlanmaktadır.

İlk olarak, aktive edilmiş rodopsinin sitozolik kuyruğunu çoklu serinler üzerinde fosforile edecek, transdusinin aktivasyonunu kısmen inhibe edecek bir rodopsin kinaz (RK) bulunmaktadır. Ayrıca, bir inhibitör protein (arrestin) daha sonra rodopsin aktivitesini daha fazla inhibe etmek için fosforlanmış rodopsinlere bağlanmaktadır.

Tutuklama rodopsini kapatırken, bir RGS proteini (GTPaz aktive edici proteinler (GAP'ler) olarak işlev görür) bağlı GTP'nin GDP'ye hidroliz oranını artırarak transdusini (G-proteini) "kapalı" duruma getirir.

cGMP konsantrasyonu düştüğünde, önceden açık olan cGMP'ye duyarlı kanallar kapanır ve bu da kalsiyum iyonlarının akışında bir azalmaya yol açmaktadır. Kalsiyum iyonlarının konsantrasyonundaki ilişkili azalma, kalsiyum iyonuna duyarlı proteinleri uyarmaktadır. Bu proteinler daha sonra cGMP'yi yenilemek için guanilil siklazı aktive eder ve onu hızla orijinal konsantrasyonuna geri getirmektedir. Bu, cGMP'ye duyarlı kanalları açar ve plazma zarının depolarizasyonuna neden olmaktadır.[9]

Duyarsızlaştırma

Çubuklar uzun süre yüksek konsantrasyonda fotonlara maruz kaldıklarında çevreye karşı duyarsızlaşırlar.

Rodopsin, rodopsin kinaz (GPCR kinazlarının (GRK'ler) bir üyesi) tarafından fosforile edildiğinden, yüksek afinite ile arrestine bağlanmaktadır. Bağlı tutuklama, duyarsızlaştırma sürecine en az iki şekilde katkıda bulunabilir. İlk olarak, G proteini ile aktive edilmiş reseptör arasındaki etkileşimi engellemektedir. İkincisi, reseptöre klatrin bağımlı endositoz makinesine yardımcı olmak için bir adaptör protein olarak hizmet etmektedir.[9]

Duyarlılık

Bir çubuk hücre, tek bir ışık fotonuna tepki verecek kadar hassastır ve tek bir fotona konilerden yaklaşık 100 kat daha duyarlıdır.[10] Çubuklar, konilerden daha az ışık gerektirdiğinden, geceleri birincil görsel bilgi kaynağıdır. Koni hücreleri ise aktive olmak için onlarca ila yüzlerce foton gerektirir. Ek olarak, birden fazla çubuk hücre, sinyalleri toplayarak ve yükselterek tek bir ara nöron üzerinde birleşmektedir. Bununla birlikte, bu yakınsama görme keskinliğine (veya görüntü çözünürlüğüne) bağlıdır. Çünkü birden fazla hücreden toplanan bilgi, görsel sistemin her bir çubuk hücreden ayrı ayrı bilgi alması durumunda olacağından daha az farklıdır.

Çubuklara (R) kıyasla kısa (S), orta (M) ve uzun (L) dalga boyu konilerinin dalga boyu duyarlılığı.[11]

Çubuk hücreler ayrıca ışığa konilerden daha yavaş tepki verir ve aldıkları uyaranlar kabaca 100 milisaniyede işlenmektedir. Bu, çubukları daha küçük miktarlardaki ışığa karşı daha duyarlı hale getirirken, aynı zamanda, hızlı değişen görüntüler gibi zamansal değişiklikleri algılama yeteneklerinin, konilerden daha az doğru olduğu anlamına gelmektedir.[3]

George Wald ve diğerleri tarafından yapılan deneyler, çubukların en çok 498 nm (yeşil-mavi) civarındaki ışığın dalga boylarına duyarlı olduğunu ve yaklaşık 640 nm'den (kırmızı) daha uzun dalga boylarına karşı duyarsız olduğunu göstermiştir. Bu Purkinje etkisinden kaynaklanmaktadır: alacakaranlıkta yoğunluk azaldıkça, çubuklar devreye girer ve renk tamamen kaybolmadan önce, görmenin tepe duyarlılığı çubukların tepe duyarlılığına (mavi-yeşil) doğru kaymaktadır.[12]

Kaynakça

  1. ^ Curcio, C. A.; Sloan, K. R. (1990). "Human photoreceptor topography". The Journal of Comparative Neurology. 292 (4): 497-523. doi:10.1002/cne.902920402. PMID 2324310. 
  2. ^ "The Rods and Cones of the Human Eye". hyperphysics.phy-astr.gsu.edu. 28 Ekim 2000 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Nisan 2016. 
  3. ^ a b c Kandel E.R., Schwartz, J.H., Jessell, T.M. (2000). Principles of Neural Science, 4th ed., pp. 507–513. McGraw-Hill, New York.
  4. ^ "Photoreception" McGraw-Hill Encyclopedia of Science & Technology, vol. 13, p. 460, 2007
  5. ^ "How Big Is a Photoreceptor". Cell Biology By The Numbers. Ron Milo & Rob Philips. 8 Ekim 2014 tarihinde kaynağından arşivlendi. 
  6. ^ Li, Shuai; Mitchell, Joe; Briggs, Deidrie J.; Young, Jaime K.; Long, Samuel S.; Fuerst, Peter G. (1 Mart 2016). "Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs". PLOS ONE. 11 (3): e0150024. Bibcode:2016PLoSO..1150024L. doi:10.1371/journal.pone.0150024. PMC 4773090 $2. PMID 26930660. 21 Şubat 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Ocak 2017 – PLoS Journals vasıtasıyla. 
  7. ^ Human Physiology and Mechanisms of Disease by Arthur C. Guyton (1992) p. 373
  8. ^ "G Proteins". rcn.com. 19 Eylül 2002 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Ocak 2017. 
  9. ^ a b Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2008). Molecular Biology of The Cell, 5th ed., pp.919-921. Garland Science.
  10. ^ Okawa, Haruhisa; Alapakkam P. Sampath (2007). "Optimization of Single-Photon Response Transmission at the Rod-to-Rod Bipolar Synapse". Physiology. Int. Union Physiol. Sci./Am. Physiol. Soc. 22 (4): 279-286. doi:10.1152/physiol.00007.2007. PMID 17699881. 
  11. ^ Bowmaker J.K. and Dartnall H.J.A. (1980). "Visual pigments of rods and cones in a human retina". J. Physiol. 298: 501-511. doi:10.1113/jphysiol.1980.sp013097. PMC 1279132 $2. PMID 7359434. 
  12. ^ Wald, George (1937b). "Photo-labile pigments of the chicken retina". Nature. 140 (3543): 545. Bibcode:1937Natur.140..545W. doi:10.1038/140545a0. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Renk körlüğü</span> Hastalık çeşidi

Renk körlüğü bir canlının görme merkezinde özel bir pigment molekülünün bulunmaması veya gerektiğinden az bulunmasıdır. Bu eksiklik sonucunda çeşitli renklerin çevresindeki renkler ayırt edilemez.

Nöronlar arasında veya bir nöron ile başka tür bir hücre arasında iletişimi sağlayan kimyasallara nörotransmitter veya nörotransmiter denir. Sinir sistemi boyunca sinirsel sinyaller bu kimyasal taşıyıcılar yardımıyla iletilir.

Retina (latince:rete) ya da ağkatman çoğu omurgalı ve bazı yumuşakçaların gözünün en içindeki görmeyi sağlayan ışığa ve renge duyarlı hücrelerin bulunduğu göz doku tabakasıdır. Gözün optiği, retinadaki görsel dünyanın odaklanmış iki boyutlu bir görüntü oluşturur ve bu görüntüyü beyne elektriksel sinir uyarılarına çevirerek görsel algı oluşturur. Retina, bir kameradaki film veya görüntü sensörü 'ne benzer bir iş yapar.

<span class="mw-page-title-main">Pigment</span>

Pigment ya da boyar madde, suda tamamen veya hemen hemen çözünmeyen renkli bir malzemedir. Bunun tersine, boyalar genelde, en azından kullanımlarının bir aşamasında çözünürdür. Boyalar genellikle organik bileşik pigmentler ise genellikle inorganik bileşikdir. Tarih öncesi ve tarihi değeri olan pigmentler arasında koyu sarı, odun kömürü ve lapis lazuli bulunur. Sanayide olduğu kadar sanatta da kalıcılık ve istikrar istenen özelliklerdir. Kalıcı olmayan pigmentler kaçak olarak adlandırılır. Kaçak pigmentler zamanla veya ışığa maruz kaldıkça solarken bazıları sonunda kararır. Pigmentler boya, mürekkep, plastik, kumaş, kozmetik, gıda ve diğer malzemeleri renklendirmede kullanılır. İmalat ve görsel sanatlarda kullanılan çoğu pigment kuru renklendiricidir ve genellikle ince bir toz hâlinde öğütülür. Boyada kullanım için bu toz, pigmenti askıya alan görece nötr veya renksiz bir malzeme olan bağlayıcıya eklenir ve boyaya yapışkanlık verir. Genellikle aracında çözünmez olan bir pigment ile kendisi bir sıvı olan veya aracında çözünen boya arasında bir ayrım yapılır. Renklendirici, ilgili araca bağlı olarak bir pigment veya bir boya görevi görebilir. Bazı durumlarda pigment, bir metalik tuzla çözülebilir bir boyanın çökeltmesi ile boyadan üretilebilir. Oluşan pigmente göl pigmenti denir. Biyolojik pigment terimi, çözünürlüklerinden bağımsız olarak tüm renkli maddeler için kullanılır.

<span class="mw-page-title-main">Siklik adenozin monofosfat</span>

Siklik adenozin monofosfat, kısaltma cAMP ve cyclic AMP olarak da bilinir. cAMP adenozin trifosfat (ATP) tan elde edilir ve çeşitli organizmalarda cAMP bağımlı yolda hücre içi sinyal iletiminde kullanılır.

<span class="mw-page-title-main">Gece körlüğü</span> göz hastalığı

Retinitis pigmentosa (RP), halk arasında tavuk karası ve gece körlüğü adlarıyla bilinen ve görme kaybına neden olan genetik bir göz hastalığıdır. Her 4.000 kişide 1'i etkilediği tahmin edilmektedir.

Biyokimyada reseptör veya almaç, birbiriyle kısmen örtüşen iki anlama karşılık gelir.

<span class="mw-page-title-main">Gözün evrimi</span>

Gözün evrimi, taksonlarda geniş ölçekte rastlanan özel bir homolog organ örneği olarak anlamlı bir çalışma konusudur. Gözün görsel pigmentler gibi bazı bileşenleri ortak bir atadan geliyor gibidir. Yani bu pigmentler, hayvanlar farklı dallara ayrılmadan evvel evrimlerini tamamlamıştır. Bununla birlikte görüntü oluşturma yeteneğine sahip, karmaşık gözler, aynı proteinler ve genetik malzeme kullanılarak birbirinden bağımsız olarak 50 ila 100 kere evrimleşmiştir.

<span class="mw-page-title-main">Fotoreseptör hücre</span>

Fotoreseptör hücre retinada bulunan ve ışığı elektrik sinyallerine dönüştürebilen özelleşmiş bir nöron tipidir. Fotoreseptör hücrelerin biyolojik olarak önemi ışığı yani görülebilir elektromanyetik radyasyonu çevirdikleri sinyallerle biyolojik süreçleri harekete geçirebilmeleridir. Hücrede bulunan fotoreseptör proteinler fotonları soğurarak hücrenin zar potansiyelinde bir değişiklik meydana getirirler.

<span class="mw-page-title-main">G proteini kenetli reseptör</span> G-Proteini ile ilişkili hücre içi sinyalizasyona bağlı hücre yüzeyi reseptörleri sınıfı

G proteini kenetli reseptörler (GPCR) veya yedi transmembran parçalı yapıda olan reseptörler, geniş bir almaç ailesidir. Hücre dışı bileşikleri algılayarak hücre içi sinyal iletimi (transdüksiyon) yollarını etkinleştirirler. Hücre içinde G proteinlerine bağlanırlar. Hücre zarından kıvrılarak yedi kez geçtiklerinden "yedi transmembran parçalı" (7TM) adlandırmasına da sahiptirler.

<span class="mw-page-title-main">Retinal</span> kimyasal bileşik

Retinal, retinaldehit olarak da bilinir. Başlangıçta retinen olarak adlandırılmıştı ve A vitamini aldehiti olduğu keşfedildikten sonra yeniden adlandırıldı. Retinal, A vitamininin birçok vitamerinden biridir. Retinal, opsin olarak adlandırılan proteinlere bağlanan ve hayvanlarda görme olayının kimyasal temeli olan bir polien kromoforudur. Retinal bazı mikroorganizmalarda ışığın metabolik enerjiye dönüşmesini sağlar.

Fotoreseptör proteinler çeşitli organizmalarda ışığın algılanmasını ve tepki verilmesini sağlayan, ışığa duyarlı proteinlerdir. Bu proteinlere örnek olarak omurgalıların retinasında bulunan fotoreseptör hücrelerdeki rodopsin, bitkilerdeki fitokrom, bazı baktilerdeki baktertorodopsin ve bakteriopitokromlar verilebilir. Işığa tepki olarak; görme, ışığa yönelim, fototaksi ve biyolojik saat gibi ışıklı-ışıksız ortam dönüşümlerine verilen tepkilerin yanı sıra, bitkilerde çiçeklenme zamanının kontrolü ve hayvanlarda çiftleşme mevsiminin ayarlanması gibi diğer fotoperiyodizmleri de kontrol ederler.

Nörofarmakoloji, ilaçların sinir sistemindeki hücresel işlevini ve davranışı etkileyen nöral mekanizmaları araştıran bilim dalıdır. Nörofarmakolojinin davranışsal ve moleküler olmak üzere iki ana alt dalı vardır. Davranışsal nörofarmakoloji, ilaç bağımlılığı ve bağımlılığının insan beynini nasıl etkilediğinin incelenmesi de dahil olmak üzere ilaçların insan davranışını nasıl etkilediğine odaklanır. Moleküler nörofarmakoloji, nöronların ve nörokimyasal etkileşimleri incelemenin yanı sıra nörolojik fonksiyon üzerinde faydalı etkileri olan ilaçların geliştirilmesi genel amacını taşır. Bu alanların her ikisi de yakından bağlantılıdır, çünkü her ikisi de merkezi ve periferik sinir sistemlerindeki nörotransmitterler, nöropeptitler, nörohormonlar, nöromodülatörler, enzimler, ikinci haberciler, ortak taşıyıcılar, iyon kanalları ve reseptör proteinlerinin etkileşimleri ile ilgilidir. Bu etkileşimleri inceleyen araştırmacılar, ağrı, Parkinson hastalığı ve Alzheimer hastalığı gibi nörodejeneratif hastalıklar, psikolojik bozukluklar, bağımlılık gibi birçok farklı nörolojik bozukluğu tedavi etmek için ilaçlar geliştirirler.

Fotoheterotroflar heterotrofik fototroflardır - yani ışığı enerji için kullanan, ancak karbondioksiti tek karbon kaynağı olarak kullanamayan organizmalardır. Sonuç olarak, karbon gereksinimlerini karşılamak için çevreden organik bileşikler alırlar; bu bileşikler arasında karbonhidratlar, yağ asitleri ve alkoller bulunur. Fotoheterotrofik organizmaların örnekleri arasında mor kükürt ve yeşil kükürt olmayan bakteriler ve heliobakteriler bulunur. Yakın zamanda yapılan araştırmalar, Doğu Eşekarısı ve bazı yaprak bitlerinin enerji kaynaklarını desteklemek için ışığı kullanabilecekleri belirtilmiştir.

Bir retinalofototrof, iki farklı fotoototrof türünden biridir, bir fototrof alt sınıfıdır ve hücre uyarımlaması ve ışığı enerjiye dönüştürmek için kullandıkları ağtabaka(retina) bağlayıcı proteinler olarak adlandırılır. Tüm fotoototroflar gibi, retinalofototroflar da hücresel süreçlerini başlatmak için fotonları emer. Ancak, tüm fotoototrofların aksine, retinalofototroflar, kimyasal tepkimelerini güçlendirmek için klorofil veya bir elektron taşıma zinciri kullanmazlar. Bu, retinalofototrofların, inorganik karbonu organik bileşiklere dönüştüren temel bir fotosentetik süreç olan geleneksel karbon fiksasyonundan yoksun oldukları anlamına gelir. Bu nedenle uzmanlar, bunların fotoototrofik benzeri olan klorofototroflardan daha az verimli olduğunu düşünüyor.

<span class="mw-page-title-main">Koni hücreleri</span>

Koni hücreleri veya koniler, insan gözü de dahil olmak üzere birçok omurgalının gözlerinin retinalarındaki fotoreseptör hücrelerdir. Farklı dalga boylarındaki ışığa farklı tepki verirler ve bu nedenle renkli görmeden sorumludurlar. Loş ışıkta daha iyi çalışan çubuk hücrelerin aksine, nispeten parlak ışıkta en iyi şekilde çalışırlar. Koni hücreleri, retinanın çevresine doğru, sayıları hızla azalan çok ince, yoğun şekilde paketlenmiş konilere sahip 0,3 mm çapında çubuksuz bir alan olan fovea centralis'te yoğun bir şekilde toplanmıştır. Optik diskte bulunmazlar ve kör noktaya katkıda bulunurlar. İnsan gözünde yaklaşık altı ila yedi milyon koni vardır ve bunlar en çok sarı beneğe doğru yoğunlaşmıştır.

<span class="mw-page-title-main">Retina yatay hücreleri</span>

Yatay hücreler, omurgalı gözlerinin retinasının iç nükleer tabakasında hücre gövdelerine sahip yanal olarak birbirine bağlanan nöronlardır. Birden fazla fotoreseptör hücresinden gelen girişi entegre etmeye ve düzenlemeye yardımcı olmaktadırlar. İşlevleri arasında, yatay hücrelerin yanal inhibisyon yoluyla kontrastı artırmaktan ve hem parlak hem de loş ışık koşullarına uyum sağlamaktan sorumlu olduğuna inanılmaktadır. Yatay hücreler, çubuk ve koni fotoreseptörlerine engelleyici geri bildirim sağlamaktadır. Retina ganglion hücrelerinin birçok tipinin alıcı alanlarının antagonistik merkez-çevre özelliği için önemli oldukları düşünülmektedir.

<span class="mw-page-title-main">Retina implantı</span>

Retina implantı, Retina dejenerasyonu nedeniyle kör olan hastalara görme restorasyonu için retina protezleri, dünya çapında bir dizi özel şirket ve araştırma kurumu tarafından geliştirilmektedir. Sistem, retinitis pigmentosa (RP) veya yaşa bağlı maküler dejenerasyon (AMD) gibi retina hastalıkları nedeniyle fotoreseptörlerini kaybeden kişilere faydalı görüşü kısmen geri kazandırmak içindir. Şu anda klinik deneylerde üç tip retina implantı bulunmaktadır: epiretinal, subretinal ve suprakoroidal. Retina implantları, hayatta kalan retina nöronlarını elektriksel olarak uyararak retinaya görsel bilgi sağlar. Şimdiye kadar, ortaya çıkarılan algılar oldukça düşük çözünürlüğe sahipti ve ışığın algılanması ve basit nesnelerin tanınması için uygun olabilir.

<span class="mw-page-title-main">Uyaran (fizyoloji)</span> fizyolojide, iç veya dış çevrede tespit edilebilir bir değişiklik

Fizyolojide uyaran, bir organizmanın iç veya dış çevresinin fiziksel veya kimyasal yapısında tespit edilebilir bir değişikliktir. Bir organizmanın veya organın uygun bir tepki verebilmesi için dış uyaranları tespit etme yeteneğine duyarlılık (uyarılabilirlik) denir. Duyusal reseptörler, deride bulunan dokunma reseptörleri veya gözdeki ışık reseptörlerinde olduğu gibi vücudun dışından ve kemoreseptörler ve mekanoreseptörlerde olduğu gibi vücudun içinden bilgi alabilir. Bir uyaran bir duyusal reseptör tarafından algılandığında, uyaran transdüksiyonu yoluyla bir refleks ortaya çıkarabilir. Bir iç uyaran genellikle homeostatik kontrol sisteminin ilk bileşenidir. Dış uyaranlar, savaş ya da kaç yanıtında olduğu gibi vücutta sistemik yanıtlar üretebilir. Bir uyaranın yüksek olasılıkla algılanabilmesi için güç seviyesinin mutlak eşiği aşması gerekir; eğer bir sinyal eşiğe ulaşırsa, bilgi merkezi sinir sistemine (MSS) iletilir, burada entegre edilir ve nasıl tepki verileceğine dair bir karar verilir. Uyaranlar genellikle vücudun tepki vermesine neden olsa da, bir sinyalin bir tepkiye neden olup olmayacağını nihai olarak belirleyen MSS'dir.