İçeriğe atla

Çokdeğişirli normal dağılım

Çokdeğişirli normal
Olasılık yoğunluk fonksiyonu
Yığmalı dağılım fonksiyonu
Parametreler konum parametresi (reel vektör)
kovaryans matrisi (pozitif-kesin reel matris)
Destek
Olasılık yoğunluk fonksiyonu (OYF)
Birikimli dağılım fonksiyonu (YDF)
Ortalama
Medyan
Mod
Varyans (kovaryans matrisi)
Çarpıklık0
Fazladan basıklık0
Entropi
Moment üreten fonksiyon (mf)
Karakteristik fonksiyon

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın (veya Gauss-tipi dağılımın) çoklu değişirli hallere genelleştirilmesidir.

Genel hal

Yığmalı dağılım fonksiyonu

Genel bir tanımla, olarak ifade edilen yığmalı dağılım fonksiyonu, bir rassal vektörun, vektörüne eşit veya bu vektör değerlerden daha az olduğu zaman karşıtı olarak bulunan bütün olasılıkların toplamını ifade eden bir fonksiyondur. Çokdeğişirli normal dağılım için bir cebirsel kapalı eşitlik şeklinde bir ifadesi bulunmamaktadır. Ancak bu fonksiyonun sayısal değerlerini tahmin etmek için birkaç algoritma bulunmaktadır. Bu algoritma kullanışına bir örnek için verilen referanslarda MVNDST adlı algoritmaya bakınız. ([1] veya [2]).

Bir karşıt örneğin

İki rassal değişken olan X ve Y tek tek normal dağılım gösterseler bile bu iki rassal değişkenin bileşik olarak (X, Y) bir çoklunormal dağılım göstereceği anlamına gelmez. Buna basit bir örnekte eğer |X| > 1 ise Y=X olması ve eğer |X| < 1 ise Y = -X olmasıdır. Bu gerçek ikiden fazla sayıda rassal değişken içinde doğrudur.

Buna benzer bir karşıt örneğin için normal olarak dağılımlı olup ve korrelasyon olmaması bağımsızlık ifade etmez maddesine bakınız.

Normal dağılım gösterme ve bağımsızlık

Eğer X ve Y rassal değişkenleri tek tek normal dağılım gösterirlerse ve birbirlerinden istatistiksel olarak Bağımsızlarsa, o halde bu iki rassal değişken bileşiği (yani rassal vektörü) ikideğişirli normal dağılım gösterir veya diğer bir ifade ile ortaklaşa normal dağılımlılardır. Ancak ortaklaşa normal dağılım gösteren her iki rassal değişkenin birbirinden bağımsız olduğu gerçek değildir.

İki değişirli hal

İki boyutlu singuler olmayan halde, ikideğişirli normal dağılım için (ortalamalar (0,0)da ise) olasılık yoğunluk fonksiyonu şöyle tanımlanır:

Burada terimi ve arasındaki korelasyonu gösterir ve şu ifade kovaryans matrisi olur:

.

Afin dönüşümü

Geometrik açıklama

Bir singuler olmayan çokdeğişirli normal dağılım için aynı yoğunluk gösteren kontur eğrileri elipsoitlerdir; yani ortalamada merkezleşmiş çok-boyutlu-kürelerin doğrusal dönüşümleridir.[3] Bu elipsoitlerin esas eksenlerinin yönleri kovaryans matrisinin özvektörleri (eigenvector) olarak verilmiştir. Esas eksenlerin orantılı uzunluklarının karesi bunlara karşıt olan özdeğerler (eigenvalues) olurlar. Bu halde şu ifade ortaya çıkar:

Bunun yanında, U bir rotasyon matrisi olarak seçilebilir; çünkü bu eksenin tersini alınca hiç etkilenmemektedir; buna karşıt olarak bir matris sütûnunun tersi alınırsa unun determinantının işaretleri değişir. ile özetlenen dağılım böylelikle ifadesinin ile ölçeğinin değiştirilmesi, u ile rotasyon yapılması ve ile çevrilmesi ile ortaya çıkar.

Bunun aksine bakılırsa, ve tam ranklı U matrisi ve pozitif çapraz girdiler olan değerleri için yapılan herhangi bir seçim, bir singuler olmayan çokdeğişirli normal dağılım ortaya çıkartır. Eğer herhangi bir sıfıra eşitse ve u kare matris ise, bunun sonucunda ortaya çıkan kovaryans matrisi bir singuler matris olur. Geometrik olarak bunun açıklaması her kontur elipsoitin sonsuz olarak inceleşmesi ve n-boyutlu bir uzayda 0 bir hacim kapsamasıdır, çünkü en aşağı bir tane esas eksenin uzunluğu sıfır olmaktadır.

Korelasyonlar ve bağımsızlık

Genel olarak, rassal değişkenler birbirleriyle çok yüksek derecede bağımlı olabilirler ama hiç korelasyon göstermeyebilirler. Ama, eğer bir rassal vektör çokdeğişirli normal dağılım gösterirse o halde aralarında hiç korelasyon göstermeyen iki veya daha fazla sayıda vektör parçası istatistiksel olarak birbirinden bağımsızdır. Bundan da şu sonuc çıkartılabilir: eğer vektörün herhangi iki veya daha fazla parçası ikişer ikişer bağımsızlık gösteriyorsa, bu parçalar birbirinden bağımsızdırlar.

Fakat ayrı ayrı olarak ve marjinal olarak, iki rassal değişken normal dağılım gösterirlerse ve aralarında hiç korelasyon bulunmazsa, o halde bu iki değişkenler birbirinden bağımsızdır. Normal dağılım gösteren iki rassal değişken, ortaklaşa normal dağılım göstermeyebilirler; yani bir parçası oldukları vektör bir çokdeğişkenli normal dağılım göstermeyebilir. İki korelasyon göstermeyen ama normal dağılım gösteren fakat bağımsız olmayan rassal değişken için örneğin normal dağılım gösterip hiç korelasyon göstermemek bağımsız olmak demek değildir maddesine bakınız.

Daha yüksek momentler

Genel olarak X için kinci derecede momentler şöyle tanımlanmaktadır:

Burada

Merkezsel inci derecede momentler şöyle verilir:

(a)Eger tek ise olur. (b)Eger cift ise ve , o halde

Burada toplam setinin (sıralanmamış) çiftler üzerine tahsis edilmelerinin hepsi birlikte alınmasıdır. Bu işlem sonucunda toplam içinde sayıda terim bulunur, Her bir terim tane kovaryansın çarpımıdır.


Özellikle, 4-üncü derecedeki momentler şöyle verilirler:

Dört değişken halindeki dördüncü derece moment içinde üç tane terim bulunur.

Altıncı-derecede moment içinde (3 × 5 =) 15 terim; sekizinci derecede momentler arasında (3 × 5 × 7) = 105 terim bulunur. Altıncı-derecedeki moment için ifade şöyle genişletilebilir:

Koşullu dağılımlar

Eğer ve şu şekilde kısımlara ayrılırlarsa:

Büyüklüğü şu olur;
Büyüklüğü şu olur:

Bu halde ifadesiyle koşullu olan şöyle özetlenen çokdeğişirli normal dağılım gösterir:

Burada

olur ve covaryans matrisi şöyle verilir:

Bu matris içinde ifadesinin Schur tamamlayıcısı olur.

Bundan dikkati çekmesi gereken şu sonuçlar çıkartılır: değerinin olduğunu bilmek varyansı değiştirir. Daha şaşırtıcı olarak, ortalama değeri ile kayma gösterir. Eğer bilinmese idi, nin göstereceği dağılım olurdu.

matrisi regresyon katsayıları olarak da bilinirler.

Fisher'in enformasyon matrisi

Bir normal dağılım için Fisher'in enformasyon matrisi bir ozel sekil alir. için Fisher'in enformasyon matrisinin elemanı su olur:

Burada

  • trace fonksiyonu olur.

Kullback-Leibler ayrılımı

den dağılımına Kullback-Leibler ayrılımı şöyle verilir:


Parametrelerin kestrimi

Cokdegisirli normal dağılımın kovaryansinin maksimum olabilirlik kestiriminin elde edilmesi şaşırtıcı şekilde düzenli ve zekice yapılmıştır. Kovaryans matrislerin kestirimi maddesine bakın. Bir N-boyutlu cokludegisirli normal dağılımın olasılık yoğunluk fonksiyonu şöyle verilir:

ve kovaryans matrisinin maksimum olabilirlik kestirimi söyle yazılır:

Bu basit olarak bir n büyüklüğünde bir örneklem için örneklem kovaryans matrisidir. Bu bir yanli kestirim olup beklenen değeri

Oliur. Bir yansız örneklem kovaryansi kestirmi sudur:

Entropi

Çokdeğişirli normal dağılım için diferansiyel entropi ifadesi şöyle verilir:[4]

Burada covaryans matrisi olan nın determani olur:

Çokdeğişirli normallik sınamaları

Çokdeğişirli normallik sınamaları bir verilmiş veri seti için bir teorik çokdeğişirli normal dağılıma benzerlik olup olmadığını sınamak için hazırlanmıştır. Bu sınamalarda sıfır hipotez veri setinin çokdeğişirli normal dağılıma benzerlik gösterdiğidir. Eğer sınama ile bulunan p-değeri yeter derece küçük ise (yani genellikle 0,05 veya 0,01den daha küçük ise), sıfır hipotez reddedilir ve verinin çokludeğişirli normal dağılım göstermediği kabul edilir. Bu çokludeğişirli normallik sınamaları arasında popüler olan Cox-Small sınamasıdır:[5] Smith ve Jain'in Friedman-Rafsky testini adaptasyonu için şu referansa bakın: [6]

Dağılımdan değerlerin bulunması

ortalama vektörü ve (simetrik ve pozitif kesin olması gereken) kovaryans matrisi olan bir -boyutlu çokdeğişirli normal dağılımdan bir rastgele vektör çekmek için çok kullanılan bir yöntem şöyle uygulanır:

  1. için (matris kare kökü olan) Çoleski dekompozisyonu hesap edilir. Yani koşuluna uyan tek bir alt üçgensel matris olan bulunur.
  2. Örneğin Box-Müller dönüşümü ile üretilip elde edilebilen tane birebirine bağımsiz normal dağılım gösteren değişebilir parçalarından oluşan bir vektör bulunur.
  3. , ifadesine eşit olarak bulunur.

Kaynakça

  1. ^ [1] 15 Nisan 2008 tarihinde Wayback Machine sitesinde arşivlendi. (FORTRAN yazılımlı kodu kapsar.)
  2. ^ [2] 13 Mayıs 2008 tarihinde Wayback Machine sitesinde arşivlendi. ( MATLAB yazılımlı koduda kapsar )
  3. ^ Nikolaus Hansen. "The CMA Evolution Strategy: A Tutorial" (PDF). 27 Eylül 2011 tarihinde kaynağından (PDF) arşivlendi. 
  4. ^ Gokhale, DV (Mayıs 1989). "Entropy Expressions and Their Estimators for Multivariate Distributions". Information Theory, IEEE Transactions on. 35 (3). ss. 688-692. 
  5. ^ Cox, D. R. (Ağustos 1978). "Testing multivariate normality (Çokdeğişirli normallik testi)". Biometrika. 65 (2). ss. 263-272. 
  6. ^ Smith, Stephen P. (Eylül 1988). "A test to determine the multivariate normality of a dataset (Bir veri setinin çokdeğişirli normallik gösterip göstermediği için bir sınama)". IEEE Transactions on Pattern Analysis and Machine Intelligence. 10 (5). ss. 757-761. DOI:10.1109/34.6789. 

İlgili Araştırma Makaleleri

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Gabor Filtresi</span>

Bir Gabor filtresi, harmonik bir fonksiyon ile Gaussian bir fonksiyonunun çarpımından oluşan lineer bir filtredir.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Weibull dağılımı</span> Olasılık dağılımı

Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:

<span class="mw-page-title-main">Laplace dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Laplace dağılımı Pierre-Simon Laplace anısına isimlendirilmiş bir sürekli olasılık dağılımıdır. Arka arkaya birbiriyle yapıştırılmış şekilde ve bir de konum parametresi dahil edilerek birleştirilmiş iki üstel dağılımdan oluştuğu için, çift üstel dağılımı adı ile de anılmaktadır. İki bağımsız ve tıpatıp aynı şekilde üstel dağılım gösteren bir rassal değişken bir Laplace dağılımı ile işlev görürler. Bu, aynen üstel dağılım gösteren rassal zamanda değerlendirilen Brown devinimine benzer.

Olasılık kuramı ve istatistik bilim dalları içinde matris normal dağılımı tek değişebilirli normal dağılımının çok değişkenli olarak genelleştirilmesidir.

<span class="mw-page-title-main">Log-normal dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında log-normal dağılım logaritması normal dağılım gösteren herhangi bir rassal değişken için tek-kuyruklu bir olasılık dağılımdır. Eğer Y normal dağılım gösteren bir rassal değişken ise, bu halde X= exp(Y) için olasılık dağılımı bir log-normal dağılımdır; aynı şekilde eğer X log-normal dağılım gösterirse o halde log(X) normal dağılım gösterir. Logaritma fonksiyonu için bazın ne olduğu önemli değildir: Herhangi iki pozitif sayı olan ab ≠ 1 için eğer loga(X) normal dağılım gösterirse, logb(X) fonksiyonu da normaldir.

İstatistik bilim dalında ağırlıklı ortalama betimsel istatistik alanında, genellikle örneklem, veri dizisini özetlemek için bir merkezsel konum ölçüsüdür. En çok kullanan ağırlıklı ortalama tipi ağırlıklı aritmetik ortalamadır. Burada genel olarak bir örnekle bu kavram açıklanmaktadır. Değişik özel tipli ağırlıklar alan özel ağırlıklı aritmetik ortalamalar bulunmaktadır. Diğer ağırlıklı ortalamalar ağırlıklı geometrik ortalama ve ağırlıklı harmonik ortalamadir. Ağırlıklı ortalama kavramı ile ilişkili teorik açıklamalar son kısımda ele alınacakdır.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

Delta metodu istatistikte, bir asimtotik normal istatistiki tahmin edicinin fonksiyonu için bu tahmin edicinin sınırlayıcı varyans bilgisi kullanılarak yaklaşık bir olasılık dağılımı türetme metodudur. Delta metodu merkezi limit teoreminin genelleştirilmiş hali olarak ele alınabilir.

<span class="mw-page-title-main">Kovaryans matrisi</span>

İstatistik'te, kovaryans matrisi, rassal vektörlerin elemanları arasındaki kovaryansları içeren matristir. Kovaryans matrisi, skaler-değerli rassal değişkenler için var olan varyans kavramının çok boyutlu durumlara genelleştirilmesidir.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,