İçeriğe atla

Çok katlı

Çok katlı uzay

Çok katlı, topolojide soyut topolojik bir uzay. Bu uzayın her noktasının çevresi Öklit uzayına benzer. Bununla birlikte, çok katlı bir Öklit uzayı olmak zorunda değildir. Genel yapısı, bu basit yerel yapısından çok daha karmaşık olabilir. Çok katlının boyutu, yerel olarak benzediği Öklit uzayının boyutu olarak tanımlanır. Herhangi bir topolojik uzay içinse boyut kavramından söz etmek genelde olası değildir.

n boyutlu Öklit uzayı (Rn), n boyutlu birçok katlıdır. Birkaç nokta, 0 boyutlu birçok katlıdır. Düzlemde bir doğru 1 boyutlu birçok katlıdır; her noktasının çevresi R1'e benzer. R3'te bir düzlem ya da bir küre, 2 boyutlu çok katlı örneğidir; her bir noktasının küme içinde çevresi R2'ye benzer.

Kelimenin kökeni

Çok katlı kelimesinin Almanca karşılığı AlmancaMannigfaltigkeit'tir (çokyönlülük, çeşitlilik vs.). Bu terim, ilk kez Riemann'ın doçentlik tezinde (Habilitation, 1854) kullanmıştır. Yerel olarAlmancaMannigfaltigkeitak n boyutlu uzaya benzeyen, ama her noktasında farklı eğriliklere sahip olabilecek bir uzay tasarlamış ve bu tür bir uzaya adını vermiştir. Doçentlik tezinde şu satırlar dikkat çekmektedir: [1]

[...] n katlı uzamın (n-fold extent) bir noktasındaki eğriliğine kavranabilir bir anlam verebilmek için şuradan başlamalıyız: bir noktadan başlayan bir jeodezik, ilk yönü verildiğinde tek bir biçimde tarif edilmiş olur. Buna göre, o noktadan ve verilen yüzey-yönleriyle başlayan tüm jeodezikler göz önüne alındığında, yüzeyin o noktasında bir eğrilik belirlenmiş olur. Bu eğrilik, aynı zamanda içinde bulunulan n katlı sürekliliğin (n-fold continuum) o noktada o yüzey yönünde eğriliğidir.

Uzaya uyarlamadan önce, düz çok katlılar (flat manifoldness) hakkında genel saptamalar yapmak gerekiyor[...] Düz bir n katlı uzamda toplam eğrilik her noktada her yönde sıfırdır[...] Eğriliği tamamen sıfır olan çok katlılar, eğriliği sabit olan çok katlıların özel bir durumu diye düşünülebilir[...]

Görüldüğü gibi Riemann, bu terimi tanımlarken daha sonra Riemann Geometrisi diye anılacak geometriyi kuruyordu. Kullandığı Almanca-faltig eki, kat kat hissinden çok eğriliğin değişmesi yüzünden uzamın bükülüp kırışmasına işaret ediyordu. William Kingdon Clifford 1873'te Nature'da yayımlanan tercümesinde bu kelime "İngilizcemanifoldness" olarak karşılamıştır.[2] Türkçeye çeviri bu kelime üzerinden yapılmıştır.

Fransızca Fransızcavariété terimi ise (İngilizcedeki İngilizcevariety terimi gibi) cebirsel geometride analitik çok katlılara işaret eder.

Matematiksel tanım

(Kenarı olmayan) n boyutlu çok katlı, aşağıdaki koşulları sağlayan bir topolojik uzaydır:

  • Hausdorff'tur;
  • Herhangi bir noktasının çevresinde öyle bir açık komşuluk bulunabilir ki bu komşuluk Rn'nin açık bir alt kümesine homeomorfiktir;
  • (Kimi tanımlarda) İkinci sayılabilirlik özelliğini sağlar;
  • (Kimi tanımlarda) Parakompakttır.

Yukarıdaki tanımda ikinci koşulda, kenarı ola ikinci koşulda Rn yerine, üst yarı Öklit uzayını (yani Rn'de sonuncu koordinatı negatif olmayan noktaların kümesi) temsil etmek üzere Hn konn (kenarlı) topolojik birçok katlı tanımına dönüşür. Bu durumda ikinci koşulda homeomorfizma kelimesinin anlamlı olabilmesi için Hn üzerinde bir topoloji bulunması gerekir. Bu topoloji standart olarak Rn'den tetiklenen topolojidir. M çok katlısının bir noktası x, Hn'de açık V kümesine homeomorfik x 'in açık komşuluğu U olsun. Bu homeomorfizma altında x, V 'nin kenarına gönderiliyorsa, x noktasına çok katlının kenar noktası, tüm kenar noktaların kümesine çok katlının kenarı denir.

Örneğin, düzlemde başnoktaya uzaklıkları 1'den büyük olmayan kümeyi ele alalım. Bu kümeye (kapalı) disk denir ve 2 boyutlu birçok katlıdır. Kenarı bir çemberdir. Çember 1 boyutlu birçok katlıdır. Kenarı yoktur.

n boyutlu, kenarlı birçok katlının kenarı, n-1 boyutlu birçok katlıdır. Birçok katlının kenarının kenarı yoktur (boşkümedir).

Birçok katlının içinde bir topolojik altuzay aynı zamanda birçok katlıysa, bu altuzaya alt çok katlı denir. Yukarıda birçok katlının içinde verilen tüm çok katlılar alt çok katlı örnekleridir.

Konuyla ilgili yayınlar

Kaynakça

  1. ^ "Über die Hypothesen, welche der Geometrie zu Grunde liegen. (Habilitationsschrift, 1854)" (PDF). EMIS, The European Mathematical Information Service. 9 Nisan 2016 tarihinde kaynağından (PDF) arşivlendi. 
  2. ^ Clifford, W.K. (1968). Mathematical Papers (yeniden bas.). Chelsea Publishing Co., New York. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Topoloji</span>

Topoloji, matematiğin ana dallarından biridir. Yunancada yer, yüzey veya uzay anlamına gelen topos ve bilim anlamına gelen logos sözcüklerinden türetilmiştir. Topoloji biliminin kuruluş aşamalarında yani 19. yüzyılın ortalarında, bu sözcük yerine aynı dalı ifade eden Latince analysis situs ür.

Topolojik uzaylar, matematiğin Topoloji dalının başlıca uğraş konularıdır. Bir X kümesi ve bu kümenin alt kümelerinin bir kısmını içeren ve aşağıdaki varsayımları sağlayan S kümesinden oluşurlar:

<span class="mw-page-title-main">Küre</span> geometrik şekil

Günlük kullanımıyla küre kusursuz simetriye sahip geometrik bir nesnedir, bir yüzeydir; üç boyutlu Öklit uzayında (R3) yatar.

<span class="mw-page-title-main">Homeomorfizma</span>

Homeomorfizma veya topolojik eşyapı , matematiksel alanda topolojinin incelediği temel konulardan biridir ve iki uzayın parça koparmadan sürekli olarak birbirine dönüşümünü inceler. Kelime Yunanca homoios "benzer" ve morphē "şekil-şeklini bozmak" kelimelerinden türemiştir. Bu benzeşimler birçok değişken altyapı işlevleri ile açıklanabilir.

<span class="mw-page-title-main">Poincaré hipotezi</span>

Topolojide Poincaré hipotezi, Fransız matematikçi, fizikçi ve filozof Henri Poincaré'nin 1904 yılında ortaya attığı teoremdir.

<span class="mw-page-title-main">Eğrilik</span>

Geometri'de iki çeşit eğrilik tanımlanır. Eğrilik ve özeğrilik. Tarihte ilk olarak 2-boyutlu ve 3-boyutlu uzayda parametrik eğrilerin eğriliği incelendi. Daha sonraki aşamada 2-boyutlu ve 3-boyutlu yüzeylerin eğriliği incelendi ve ortalama eğrilik, Gaussian eğrilik gibi kavramlar ortaya çıktı.

Yüzey, matematikte ve özellikle topolojide iki boyutlu çokkatlı. İki gerçel değişkenli ve gerçel değerli bir fonksiyonun üç boyutlu uzayda (R³) grafiği tipik yüzey örneğidir. Ayrıca Dünya yüzeyi, bir yumurtanın kabuğu, bir simit birer yüzeydir.

<span class="mw-page-title-main">Simit (geometri)</span>

Topolojide ve geometride simit (torus) bir yüzeydir. Üç boyutlu uzayda bir çemberin, aynı düzlemde yatan ve çembere değmeyen bir doğru etrafında döndürülmesiyle elde edilir. Yiyecek simidin ya da yüzmek için kullanılan şişirilmiş iç lastiğin yüzeyi matematiksel olarak birer simittir.

Bölüm topolojisi, bir topolojik uzaydan başka bir topolojik uzay elde etmenin klasik yollarından biridir. Bir topolojik uzayda kimi noktaların birbirine yapıştırılmasıyla (özdeşleştirilmesiyle) elde edilen yeni kümenin üzerine konacak bölüm topolojisi, bu yeni kümeyi yeni bir topolojik uzaya dönüştürür. Bu yeni uzaya bölüm uzayı denir. Örneğin [0,1] kapalı aralığı bir topolojik uzaydır. Bu uzayda 0 ve 1 noktaları özdeşleştirilir ve bu yeni kümeye bölüm topolojisi verilirse oluşturulan topolojik uzay düzlemde birim çember olur. Başka bir örnek: düzlemde yatan birim yarıçaplı dairenin kenarının üst tarafındaki her bir nokta kenarın alt tarafında karşılık gelen noktaya yapıştırılır ve bu yeni kümenin üzerine bölüm topolojisi konursa, bu topolojik uzay 3 boyutlu Öklit uzayında birim yarıçaplı küre olur.

Topolojide, geometrik bir nesne veya uzaya yol bağlantılıysa ve iki nokta arasındaki her yol sürekli bir şekilde bir diğerine dönüştürülebiliyorsa basit bağlantılı adı verilir.

Topolojide tıkız-açık topoloji, bir topolojik uzaydan bir diğerine tüm sürekli gönderimlerin oluşturduğu küme üzerine konan bir topolojidir. Fonksiyonel analizde fonksiyon uzaylarına konan doğal bir topolojidir.

Pürüzsüz (gıcır) çokkatlı, türevli topolojide bir çeşit topolojik çokkatlı. Tanımı sayesinde, üzerinde türev alınabilir bir uzaydır. Örneğin türev ve integralin ilk tanımlandığı gerçel sayılar kümesi, 1 boyutlu pürüzsüz bir çokkatlıdır.

Matematikte deste, bir topolojik uzayın açık altkümelerine ilişkin yerel tanımlı verilerin sistematik olarak incelenmesini sağlayan bir araçtır.

<span class="mw-page-title-main">Cebirsel topoloji</span>

Cebirsel topoloji, topolojik uzayları cebirsel gereç ve yöntemlerle inceleyen matematik dalı. Matematikte bir kümenin üzerine döşenecek yapı, yönelinen matematik dalını belirler. Bir kümeye bir ya da birkaç işlem konarak sayılar kuramı ya da cebir yapmaya başlanabilir. Kümenin üzerine bir topoloji koyaraksa topoloji ve, ayrıca uzunluk koyarsak, geometri yapmaya başlanır. Üzerine topoloji konmuş bir uzayı incelemek için kimi cebirsel, aritmetik veya topolojik değişmezler tanımlanır; bunlar aracılığıyla topolojik uzayın özellikleri ayırdedilir. Örneğin tıkızlık, bağlantılılık, sayılabilirlik bu tür değişmezlerdir. Topolojik eşyapısal iki uzaydan biri bu değişmeze sahipse diğeri de buna sahip olmalıdır. Yani, eğer iki uzay için ayrı ayrı bakılan bir değişmez aynı değilse, bu iki uzay eşyapısal olmayacaktır. Yukarıda anılan en eski değişmezlerin hemen ardından inşa edilen klasik değişmezler cebirsel olanlardır.

Hausdorff uzay ya da T2 uzay ya da ayrılmış uzay, herhangi iki noktasının birbirinden ayrık komşuluklara sahip olduğu topolojik uzay. Bir topolojik uzayı geometrik sezgiye yakın duruma getiren ilk kabullerden biri Hausdorffluk koşuludur (ya da T2 koşulu). Örneğin bir Hausdorff uzayın her bir noktası, kapalı bir altuzaydır. Ayrıca bir Hausdorff uzayda her yakınsak dizinin, ağın ya da süzgecin yakınsadığı nokta tektir. Hausdorff koşulu, ilk olarak Alman matematikçi Felix Hausdorff tarafından önerilmiş ve onun adıyla anılır olmuştur.

Ayrılma belitleri bir topolojik uzayın üzerine konan ve noktaların ve altkümelerin birbirilerinden ne kadar ayrı olduğunu belirten belitler ailesi. Bir topolojik uzayın bu belitlerden birini sağladığı söylendiğinde, topolojisi hakkında global bir bilgi verilmiş ve topolojinin cinsi daraltılmış olur. Örneğin, topolojinin sahip olduğu açık kümelere bakmaksızın o topolojinin T0 olduğunu söylemek, topolojik uzayda seçilmiş herhangi iki noktanın birbirlerinden ayırt edilebilir olduğunu garanti eder.

Matematikte fonksiyon uzayı bir X kümesinden bir Y kümesine tanımlı fonksiyonların oluşturduğu kümeye verilen bir addır. Fonksiyonlar kümesi yerine fonksiyon uzayı denilmesinin nedeni matematiğin kendi içindeki uygulamalarında bu kümenin genellikle topolojik uzay veya vektör uzayı olarak ortaya çıkmasıdır.

Matematikte açık birim disk, P noktasına uzaklığı 1'den küçük noktalar kümesidir.

<span class="mw-page-title-main">Riemann yüzeyi</span>

Matematikte Riemann yüzeyi, özellikle karmaşık analizde bahsi geçen tek boyutlu karmaşık bir manifolddur. Bu yüzey(ler) ilk olarak Bernhard Riemann tarafından incelenmiş ve isimlendirilmiş. Riemann yüzeyleri, karmaşık düzlemin deforme olmuş versiyonları olarak düşünülebilir: her noktanın yakınında karmaşık düzlemin yerel olarak yamaları gibi görünürler, ama topolojisi oldukça farklı olabilmektedir.

<span class="mw-page-title-main">Genel topoloji</span>

Matematikte, genel topoloji, topolojide kullanılan temel kümeler teorisi tanımları ve yapılarıyla ilgilenen topoloji dalıdır. Diferansiyel topoloji, geometrik topoloji ve cebirsel topoloji dahil diğer birçok topoloji dalının temelini oluşturur.