İçeriğe atla

Çok değişkenli kalkülüs

Çok değişkenli kalkülüs veya Çok değişkenli hesaplama, matematik biliminin bir alt alanıdır. Bir değişkenli hesapların, birden fazla değişkenli fonksiyonlarla hesaplara yayılması ve tek değişken yerine çoklu değişken içeren fonksiyonların entegrasyonu olarak görülür. Matris, tensör, kısmi türev, çokkatlı integral, çizgi integrali, yüzey integrali, hacim integrali, Jacobi, Hesse, Gradyan gibi inceleme alanları vardır.[1]

Tipik işlemler

Limit ve süreklilik

Çok değişkenli analizde limitler ve süreklilik çalışması, tek değişkenli fonksiyonlarla gösterilmeyen birçok sonuçları üretir.[2]

Örneğin, kendi alanlarında farklı yollara yaklaşıldığında farklı sınırlar veren iki değişkenli skaler fonksiyonlar vardır. Örneğin, fonksiyon

noktaya orijinden geçen çizgiler boyunca yaklaştığında sıfıra yaklaşır/ () Ancak, orijine bir parabol boyunca yaklaştığında, fonksiyon değeri ile sınırlanır. Aynı noktaya doğru farklı yollar almak farklı limit değerleri verdiğinden, orada genel bir limit bulunmaz.

Her bir argümandaki sürekliliğin, çok değişkenli süreklilik için yeterli olmadığı da aşağıdaki örnekten görülebilir.[2] Özellikle, gerçek değerli bir fonksiyonun, iki gerçek değerli parametre ile, , sabit için nin in devamlılığı ve sabit için nin nin devamlılığı, nin devamlılığı anlamına gelmez.

Kısmi türev

Çoklu entegrasyon

Çok boyutlı hesaplamaların temel teoremleri

Uygulama alanları

Çok değişkenli analizin teknikleri, maddi dünyada ilgi duyulan birçok inceleyi gerçekleştirmek için kullanılır. Başta gelenleri şunlardır:

Fonksiyon türleriUygulanabilir teknikler
Eğriler
iken
Eğrilerin uzunlukları, çizgi integralleri ve eğrilik.
Yüzeyler
iken
Yüzeylerin alanları, yüzey integralleri, yüzeyler boyunca akış ve eğrilik.
Sayıl alanlarMaksimum ve minimum, Lagrange çarpanları, yönlü türevler, seviye kümeleri.
Vektör alanıGradyan, diverjans veya rotasyonel içeren herhangi bir vektör hesabı işlemi.

Kaynakça

  1. ^ "Çok Değişkenli Kalkülüs". 3 Kasım 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 3 Kasım 2019. 
  2. ^ a b Richard Courant; Fritz John (14 Aralık 1999). Introduction to Calculus and Analysis (İngilizce). II/2. Springer Science & Business Media. ss. 17-22. ISBN 978-3-540-66570-0. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Kalkülüs</span>

Başlangıçta sonsuz küçük hesap veya "sonsuz küçüklerin hesabı" olarak adlandırılan kalkülüs, geometrinin şekillerle çalışması ve cebirin aritmetik işlemlerin genellemelerinin incelenmesi gibi, kalkülüs sürekli değişimin matematiksel çalışmasıdır.

<span class="mw-page-title-main">Üstel fonksiyon</span>

Üstel işlev veya üstel fonksiyon, matematikte kullanılan işlevlerden biridir. Genel tanımı ax şeklindedir, burada taban a artı değere sahip bir sabittir ve üst x değişkendir. Çoğunlukla

sembolüyle gösterilir. Kimi kitaplarda ise;
sembolü kullanılır.

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Harmonik fonksiyon</span>

Matematiğin matematiksel fizik alanında ve rassal süreçler teorisinde bir harmonik fonksiyon, Rn'nin U gibi açık bir kümesi üzerinde f : UR şeklinde tanımlı, Laplace denklemini, yani

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

Gerçel analiz ya da bilinen diğer ismiyle reel analiz, matematiksel analizin bir dalıdır. Bu dal, gerçek sayılar ve bu sayılardan türetilen yapılarla ilgili temel kavramları ele alır. Ana konuları arasında diziler, seriler, limitler, süreklilik, türev, integral ve fonksiyon dizileri yer alır. Gerçek analizin incelenmesi, matematiğin diğer alanları için temel araçlar ve yöntemler sağlar.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

Matematikte diferansiyel kalkülüs, fonksiyonların girdileri değiştikçe nasıl değiştiklerini konu alan bir kalkülüs alanıdır. Diferansiyel kalkülüsteki ana inceleme nesnesi türevdir. Oldukça yakından ilişkili diğer bir kavram da türetke ya da diferansiyeldir. Bir fonksiyonun, seçilmiş belirli bir girdi değerindeki türevi, fonksiyonun o girdi değeri yakınındaki davranışını tanımlar. Genel olarak, bir fonksiyonun belirli bir noktadaki türevi, fonksiyona o noktadaki en iyi doğrusal yaklaşımı belirler. Türev bulma işlemine "türev almak" denir. Kalkülüsün temel teoremi gereğince, türev alma işlemi integral alma işleminin tersidir.

<span class="mw-page-title-main">Eğim</span>

Matematikte bir doğrunun eğimi ya da gradyanı o doğrunun dikliğini, eğimliliğini belirtir. Daha büyük eğim, daha dik bir doğru demektir.

<span class="mw-page-title-main">Çokkatlı integral</span>

Çok katlı integral birden fazla değişkenli fonksiyonların belirli integralidir. İki boyutlu gerçek uzay R2'deki fonksiyonların integraline iki katlı integral, üç boyutlu gerçek uzay R3'deki fonksiyonların integraline üç katlı integral denir. Örneğin, iki değişkenli f(x, y) ve üç değişkenli f(x, y, z) fonksiyonları için aşağıdaki gibi gösterilir:

Kalkülüste tek taraflı limit, x reel değişkenli bir f(x) fonksiyonun her iki limitidir. Burada x, ya üstten ya da alttan belirli bir noktaya yaklaşır. Bu limit şöyle sembolize edilebilir:

veya veya ya da
<span class="mw-page-title-main">Dizinin limiti</span>

Matematikte, bir dizinin limiti, dizinin terimlerinin yaklaştığı değerdir. Eğer böyle bir limit varsa diziye yakınsak denir. Yakınsamayan diziye ıraksak denir. Bir dizinin limiti, analizin nihai olarak dayandığı temel kavram olarak görülür.

Vektör analizi ve modern haliyle diferansiyel geometride ''Stokes teoremi'' ya da güncel haliyle ''genelleştirilmiş Stokes teoremi'' veya ''Stokes-Cartan teoremi'' Vektör Analizi'nden çeşitli teoremleri hem basitleştiren hem de genelleştiren çokkatlılar üzerindeki diferansiyel formların integrasyonu ile ilgili önemli bir teoremdir. Klasik anlamı için Kelvin-Stokes teoremine bakılması gerekir. Modern anlamına 20. yüzyılın önemli matematikçilerinden Ellie Cartan ile kavuşmuştur. Yani teorem ismini İrlandalı matematikçi ve fizikçi George Gabriel Stokes ve modern haliyle Fransız matematikçi ve fizikçi Ellie Cartan'dan almaktadır. Modern anlamda Stokes teoremi bir diferansiyel form olan ω'nın bazı yönlendirilebilir Ω çokkatlısının sınırları üzerindeki integralinin Ω'nın tamamı üzerindeki dış türevi dω'nın integraline eşit olduğunu söyler. Yani;

<span class="mw-page-title-main">Hacim integrali</span>

Hacim integrali çok değişkenli kalkülüsteki çokkatlı integralin 3 boyutlu durumudur. Hacim integrali fizikte önemli bir yere sahiptir. Özellikle yoğunlukların hesabı için kullanılır.

Bu, matematiğin bir alt dalı ve matematiksel analizin giriş kısmı olan kalkülüs (hesap) konularının bir listesidir.

Matematiğin bir alt dalı olan çok değişkenli karmaşık analizde Hartogs teoremi, birden fazla karmaşık değişkenle tanımlı holomorf fonksiyonların her bir karmaşık değişkene göre ayrı ayrı holomorf olmasının fonksiyonun sürekli olduğunu verdiğini ifade eden bir sonuçtur. Başka bir deyişle, eğer her için değişkeninde holomorf ise, sürekli bir fonksiyondur. Teorem, Friedrich Hartogs'un adını taşımaktadır.

<span class="mw-page-title-main">Rolle teoremi</span> reel türevlenebilir bir fonksiyonun iki eşit değeri arasındaki durağan noktalar üzerine bir reel analiz teoremi

Kalkülüste, Rolle teoremi veya Rolle lemması temel olarak, iki farklı noktada eşit değerlere sahip herhangi bir gerçel değerli türevlenebilir fonksiyonun, aralarında bir yerde, teğet doğrusunun eğiminin sıfır olduğu en az bir noktaya sahip olması gerektiğini belirtir. Böyle bir nokta, durağan nokta olarak bilinir. Bu nokta, fonksiyonun birinci türevinin sıfır olduğu noktadır. Teorem adını Michel Rolle'den almıştır.