İçeriğe atla

Çizgi integrali

Matematikte bir çizgi integrali (bazen yol integrali, eğri integrali veya eğrisel integral de denilir), integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

İntegrali alınan fonksiyon (integrand), skaler alan veya vektör alanı olabilir. Çizgi integralinin değeri, alanın eğri üzerinde bir skaler fonksiyonla ağırlıklaştırılmış (genelde bu ağırlık yay uzunluğudur veya bir vektör alanı için, vektör alanının diferansiyel bir eğriyle skaler çarpımıdır) olarak aldığı tüm değerlerin toplamının değeridir. Bu ağırlık, çizgi integralini aralıklar üzerinde tanımlanan daha basit integrallerden ayırır. Fizikteki çoğu basit formül (mesela, ), çizgi integrali bağlamında doğal sürekli analoglara sahiptir (). Çizgi integrali yandaki resimdeki gibi, bir elektrik veya yerçekimsel alanda hareket eden bir nesnenin üzerinde yapılan işi bulur.

Vektör hesabı

Niteliksel bağlamda, çizgi integrali bir eğri boyunca verilmiş olan bir alanın toplam etkisinin ölçümü olarak düşünülebilir.

Bir skaler alanın çizgi integrali

Bir f : URn R skaler alanı için, bir CU boyuncaki çizgi integrali

şeklinde tanımlanır. Burada r: [a, b] C ise r(a) ve r(b) C 'nin son noktaları olacak şekilde, C 'nin herhangi bir birebir örten parametrizasyonudur.

f fonksiyonu integrand, C eğrisi integralin tanım kümesi ve ds sembolü ise yay uzunluğudur. Skaler alanların çizgi integralleri seçilmiş r parametrizasyonuna bağlı değildir.

Bir vektör alanının çizgi integrali

Bir F : URn Rn vektör alanı için, CU boyunca, r yönündeki çizgi integrali

şeklinde tanımlanır. Burada nokta çarpımdır ve r: [a, b] C ise, r(a) ve r(b) C 'nin sonnoktaları olacak şekilde, C eğrisinin birebir örten bir parametrizasyonudur.

Bir skaler alanın çizgi integrali bu yüzden vektörlerin doğruya her zaman teğet olduğu bir vektör alanının çizgi integralidir.

Vektör alanlarının çizgi integralleri, mutlak değer içindeki r parametrizasyonuna bağlı değildir; ancak eğrinin yönüne bağlıdır. Dha ayrıntılı bir şekilde, parametrizasyonun yönündeki tersi bir değişim çizgi integralinin işaretini değiştirir.

Yol bağımsızlığı

Bir F vektör alanı, bir G skaler alanının gradyanıysa; yani

ise, o zaman G ve r(t) 'nin bileşkesinin türevi

olur ki bu da F 'nin r(t) üzerindeki çizgi integralinin integrandıdır. O zaman, verilen bir C yolu için

olmaktadır. Yazıyla ifade edilirse, F 'nin C üzerindeki integrali sadece G nin r(b) ve r(a) noktalarındaki değerlerine bağlıdır ve bu yüzden aradaki yoldan bağımsızdır.

Bu sebeple, bir skaler alanın gradyanı olan bir vektör alanının çizgi integrali yoldan bağımsız olarak adlandırılır.

Uygulamalar

Çizgi integralinin fizikte birçok uygulaması vardır. Mesela, bir F vektör alanı olarak temsil edilen bir kuvvet alanı içinde yer alan bir C eğrisi üzerinde hareket etmekte olan bir parçacığın üzerinde yapılan iş F 'nin C üzerindeki çizgi integralidir.

Karmaşık çizgi integrali

Çizgi integrali karmaşık analizde temel bir araçtır. U, C'nin açık bir kümesi olsun,  : [a, b] U doğrultulabilir eğri ve f : U C bir fonksiyon olsun. O zaman

çizgi integrali, [a, b] aralığını a = t0 < t1 < ... < tn = b olacak şekilde daha küçük aralıklara ayırılarak ve

ifadesi göz önüne alınarak düşünülebilir. O zaman, alt aralıkların uzunlukları sıfıra gittikçe, integral bu toplamın limiti olur.

Eğer sürekli türevlenebilir bir eğriyse, çizgi integrali gerçel değişkenli bir fonksiyonun integrali olarak değerlendirilebilir:

kapalı bir eğri olduğu zaman, yani, başlangıç ve bitiş noktaları aynıysa,

gösterimi, f 'nin boyuncaki çizgi integrali için kullanılır.

Karmaşık fonksiyonların çizgi integralleri çeşitli teknikler kullanılarak değerlendirilebilir: İntegral, gerçel ve karmaşık kısımlarına bölünüp problem iki tane gerçel integralin bulunması problemine düşürülebilir, Cauchy integral formülü diğer durumlarda kullanılabilir. Eğer çizgi integralinin alındığı eğri, fonksiyonun analitik olduğu ve tekillik içermediği bir bölgede kapalı bir eğriyse, o zaman integralin değeri sadece 0 olur ki bu da Cauchy integral teoremi'nin bir sonucudur. Kalıntı teoremi sebebiyle, gerçel değişkene sahip gerçel değerli fonksiyonların integralini bulmak için çoğu zaman karmaşık düzlemde kontür integralleri kullanılır. (örnek için kalıntı teoremine bakınız.)

Örnek

f(z)=1/z fonksiyonunu ele alalım. C kontürü, eit, şeklinde parametrize edilebilen, 0 etrafındaki birim çember olsun. Değişken değiştirmeyle

ifadesini buluruz. Burada, herhangi bir karmaşık z sayısının r, z 'nin modülüsü (mutlak değeri) olacak şekilde reit olarak yazılabileceğini kullandık. Birim çember üzerinde r = 1 olduğu için geriye kalan tek değişken t ile gösterilen açı değişkenidir. Cevap, aynı zamanda Cauchy integral formülü ile de doğrulanabilir.

Bir vektör alanının integrali ile karmaşık çizgi integrali arasındaki ilişki

Karmaşık sayıları 2 boyutlu vektörler olarak alırsak, 2 boyutlu bir vektör alanının çizgi integrali, karşılık gelen karmaşık değerli karmaşık fonksiyonun eşleniğinin çizgi integralinin gerçel kısmına denk gelir. Daha ayrıntılı bir şekilde, ve ise, o zaman sağ taraftaki her iki integral de var olduğu ve C 'nin parametrizasyonu ile aynı yönde olduğu sürece

eşitliği elde edilir.

Cauchy-Riemann denklemleri sebebiyle, bir holomorf fonksiyonun eşleniğine karşılık gelen bir vektör alanının körlü sıfırdır. Bu da her iki tip integralin de sıfır olduğu Stokes teoremi ile ilişkilidir.

Ayrıca, çizgi integrali değişken değiştirme kullanılarak da değerlendirilebilir.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Fizikte ve matematikte, matematikçi Hermann Minkowski anısına adlandırılan Minkowski uzayı veya Minkowski uzayzamanı, Einstein'ın özel görelilik kuramının en uygun biçimde gösterimlendiği matematiksel yapıdır. Bu yapıda, bilinen üç uzay boyutu tek bir zaman boyutuyla birleştirilerek, uzay zamanını betimlemek için dört boyutlu bir çokkatlı oluşturulmuştur.

Fizikte, birim zamanda aktarılan veya dönüştürülen enerjiye ya da yapılan işe güç denir, P simgesiyle gösterilir. Uluslararası Birim Sistemi'nde güç birimi, saniyedeki bir joule'e eşit olan watt'tır kısacası J/s. Eski çalışmalarda güç bazen iş olarak adlandırılırmıştır. Güç türetilmiş bir nicelik ve skaler bir büyüklüktür.

<span class="mw-page-title-main">Morera teoremi</span> Matematik terimi

Matematiğin bir dalı olan karmaşık analizde, Giacinto Morera'nın ardından adlandırılan Morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için kullanılan temel bir sonuçtur. İtalyan matematikçi Giacinto Morera'nın adını taşımaktadır.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

<span class="mw-page-title-main">Cauchy integral formülü</span>

Matematikte, Augustin Louis Cauchy'nin adıyla adlandırılan Cauchy integral formülü karmaşık analizde merkezi bir ifadedir. Bir disk üzerinde tanımlanmış holomorf bir fonksiyonun tamamen, fonksiyonun disk sınırındaki değerleri tarafından belirlendiğini ifade eder. Ayrıca, holomorf bir fonksiyonun tüm türevleri için formül elde etmekte de kullanılabilir. Cauchy formülünün analitik önemi karmaşık analizde "türev alma integral almaya denktir" ifade etmesidir: Bu yüzden karmaşık türevlilik, integral alma gibi, gerçel analizde olmayan düzgün limitler altında iyi davranma özelliğine sahiptir.

<span class="mw-page-title-main">Kalıntı teoremi</span>

Karmaşık analizdeki kalıntı teoremi veya bilinen bir diğer adıyla rezidü teoremi, analitik fonksiyonların kapalı eğriler üzerindeki çizgi integrallerini bulmak için kullanılan önemli bir araçtır ve ayrıca sık bir şekilde gerçel integralleri bulmak için de kullanılır. Cauchy integral teoremini ve Cauchy integral formülünü genelleştirir.

Karmaşık analizde kalıntı veya rezidü, bir meromorf fonksiyonun bir tekillik etrafındaki çizgi integrallerinin davranışını açıklayan bir karmaşık sayıdır. Kalıntılar oldukça kolay bir şekilde hesaplanabilir ve bilindiklerinde kalıntı teoremi sayesinde çok karışık gerçel integrallerin belirlenmesi yolunu açarlar.

Karmaşık analizde kontür integrali veya kontür integrali almak karmaşık düzlemdeki yollar boyunca belli integralleri bulmak için kullanılan bir yöntemdir.

Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

Matematikte, Green kuramı basit, kapalı bir C eğrisi etrafındaki çizgi integrali ile C eğrisinin sınırlandırdığı D düzlem bölgesi üzerindeki çift katlı integral arasındaki ilişkiyi verir. Teorem adını matematikçi George Green'den almıştır ve daha genel hâli olan Stokes teoreminin iki boyuttaki özel durumudur.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.