İçeriğe atla

Çevre açı

Çevre açı , çember üzerindeki aynı yayı oluşturan (veya gören) merkezi açı 'nın yarısıdır. Böylece, açısı, tepe noktası çember üzerinde hareket ettirildikçe değişmez.

Geometride, çevre açı, çember üzerinde iki sekant (kesen) çizgisi kesiştiğinde bir çember üzerinde oluşan açıdır. Çember üzerindeki bir nokta (açının tepe noktası) ile çember üzerinde verilen diğer iki noktanın oluşturduğu açı olarak da tanımlanabilir.

Eşdeğer olarak, bir çevre açı, bir bitiş noktasını paylaşan çemberin iki kirişiyle tanımlanır.

Çevre açı teoremi, bir çevre açının ölçüsünü, aynı yayı oluşturan merkezi açının ölçüsü ile ilişkilendirir.

Çevre açı teoremi, Öklid'in "Elementler" kitabının 3. kitabında Önerme 20 olarak görünür.

Teorem

Açıklama

Sabit ve noktaları için, açısının eşit olduğu düzlemdeki noktaları kümesi  bir çemberin yaydır. 'nun çemberin merkezi olduğu 'nin ölçüsü, 'dır.

Çevre açı teoremi, bir çember içine çizilmiş bir açısının, çember üzerindeki aynı yaya karşılık gelen (veya aynı yayı gören) merkezi açı 'nın yarısı olduğunu belirtir. Bu nedenle, tepesi çember üzerinde farklı konumlara taşındığında açı değişmez.

İspat

Bir kirişin çap olduğu çevre açılar

Durum: Bir kiriş çaptır.

Şekilde görüldüğü gibi bir çemberin merkezi olsun. Çember üzerinde iki nokta seçelim ve bunlara ve diyelim. doğrusunu çizelim ve 'yu geçecek şekilde uzatalım, böylece noktasının çapa göre zıttı olan noktasında çemberle kesişir. Tepe noktası olan ve kenarları ve noktalarından geçen bir açı çizelim.

doğrusunu çizelim. Açı , bir merkez açıdır; buna diyelim. ve çizgilerinin her ikisi de çemberin yarıçaplarıdır, bu nedenle eşit uzunluklara sahiptirler. Bu nedenle, üçgeni ikizkenardır, öyle ise açısı (çevre açı) ve açısı eşittir; her birini olarak gösterelim.

ve açıları bütünlerdir. 'dan geçen çizgisi düz bir doğru olana kadar toplamları 'ye kadar artar. Bu nedenle, açısının ölçüsü olarak alınabilir.

Bir üçgenin üç açısının toplamının olduğu ve üçgeninin üç açısının:

.

Bu nedenle,

Her iki taraftan 180° çıkarırsak,

burada , yayını gören merkez açı ve , yayını oluşturan çevre açıdır.

Çemberin merkezi, açının içinde kalan çevre açılar

Durum: İçten açıya merkez

Merkezi noktası olan bir çember verildiğinde, çember üzerinde üç nokta , ve alalım. ve doğrularını çizelim: açısı, bir çevre açıdır. Şimdi doğrusunu çizelim ve onu noktasında çemberle kesişecek şekilde noktasını geçecek şekilde uzatalım. açısı, çember üzerindeki yayını görür.

Bu yayın, içinde noktasını içerdiğini varsayalım. noktası, noktasının çapa göre karşısıdır. ve açıları da çevre açılardır, ancak bu açıların her ikisi de çemberin merkezinden geçen bir kenara sahiptir, bu nedenle yukarıdaki Bölüm 1'deki teorem bunlara uygulanabilir.

Bu nedenle,

o zaman,

Böylece

ve doğrularını çizelim. ve açıları gibi açısı da merkezi bir açıdır ve

olsun, böylece

Birinci bölümden biliyoruz ki ve 'dir. Bu sonuçların denklem (2) ile birleştirilmesi aşağıdaki sonucu verir:

bu nedenle, denklem (1)'den aşağıdaki sonuç elde edilir:

Çemberin merkezi, açının dışında kalan çevre açılar

Durum: Merkez, açının dışında

Önceki durum, çevre açının ölçüsünün, bu ispatın ilk bölümünde tartışıldığı gibi iki çevre açı arasındaki fark olduğu durumu kapsayacak şekilde genişletilebilir.

Merkezi noktası olan bir çember verildiğinde, çember üzerinde üç nokta , ve seçilsin. ve doğrularını çizelim: açısı, bir çevre açıdır. Şimdi doğrusunu çizelim ve noktasında çemberle kesişecek ve noktasını geçecek şekilde uzatalım. açısı, çember üzerindeki yayını görür.

Bu yayın, içinde noktasını içermediğini varsayalım. noktası, noktasının çapa göre zıttıdır. ve açıları da çevre açılardır, ancak bu açıların her ikisi de çemberin merkezinden geçen bir kenara sahiptir, bu nedenle yukarıdaki Bölüm 1'deki teorem bunlara uygulanabilir.

Bu nedenle,

.

o zaman,

olsun, böylece

ve doğrularını çizelim. ve açıları gibi açısı da merkezi bir açıdır ve

olsun, böylece

Birinci bölümden biliyoruz ki ve şu . Bu sonuçların denklem (4) ile birleştirilmesi,

bu nedenle, denklem (3) ile aşağıdaki ifadeye ulaşılır:

Sonuç

Benzer bir argümana göre, bir kiriş ile onun kesişme noktalarından birinde teğet doğrusu arasındaki açı, kirişin kapsadığı merkezi açının yarısına eşittir. Ayrıca bkz. Çemberlere teğet doğrular.

Uygulamalar

Çevre açı teoremi, düzlemin temel Öklid geometrisinin birçok ispatında kullanılır. Teoremin özel bir durumu, bir çapın kapsadığı açının her zaman , yani bir dik açı olduğunu belirten Thales teoremidir. Teoremin bir sonucu olarak, kirişler dörtgeninin zıt açılarının toplamı 'dir ve tersine, bunun doğru olduğu herhangi bir dörtgen bir çember içerisine çizilebilir. Başka bir örnek olarak, çevre açı teoremi, bir çembere göre bir noktanın kuvveti ile ilgili birkaç teorem için temel oluşturur. Dahası, iki kiriş bir çember içinde kesiştiğinde, parçalarının uzunluklarının çarpımlarının eşit olduğunu kanıtlamaya izin verir.

Elipsler, hiperboller ve paraboller için çevre açı teoremleri

Çevre açı teoremleri elipsler, hiperboller ve paraboller için de mevcuttur. Temel farklar, bir açının ölçümleridir. (Bir açı, bir çift kesişen çizgi olarak kabul edilir.)

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Gabor Filtresi</span>

Bir Gabor filtresi, harmonik bir fonksiyon ile Gaussian bir fonksiyonunun çarpımından oluşan lineer bir filtredir.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

Köklerin yer eğrisi, kontrol teorisinde, bir kapalı çevrim transfer fonksiyonunun kutuplarının sistemin kazancına göre değişimini gösteren çizimlerdir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

<span class="mw-page-title-main">Thales teoremi (çember)</span>

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

<span class="mw-page-title-main">Kiriş (geometri)</span>

Geometride kiriş, bir çemberde, iki uç noktası da çemberin üstünde bulunan doğru parçası. Sekant, sekant doğrusu veya kesen, bir kirişin doğruya uzatılmış halidir. Diğer bir ifadesiyle, kiriş bir kesenin çember içinde kalan kısmıdır. Kiriş daha genel anlamıyla, herhangi bir eğrinin iki noktasını birleştiren doğru parçasıdır. Çemberin merkezinden geçen kiriş, aynı zamanda çemberdeki en uzun kiriş, o çemberin çapıdır.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

Dış açı teoremi, bir üçgenin bir dış açısının ölçüsünün, uzak iç açılarının ölçülerinden daha büyük olduğunu belirten Ökllid'in Elemanlar'ı Önerme 1.16'dır. Bu, mutlak geometride temel bir sonuçtur çünkü ispatı paralellik postülatına bağlı değildir.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Casorati-Weierstrass teoremi</span>

Karmaşık analizde Casorati-Weierstrass teoremi, holomorf fonksiyonların esaslı tekillikler civarındaki olağanüstü davranışlarını açıklayan bir ifadedir. Teorem, Karl Theodor Wilhelm Weierstrass ve Felice Casorati'ye atfen isimlendirilmiştir.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.

MS 2. yüzyılda Mısır'da Yunan astronom, coğrafyacı ve jeolog Batlamyus tarafından oluşturulan kirişler tablosu, matematiksel astronomi üzerine bir inceleme olan Batlamyus'un Almagest adlı eserinin Kitap I, bölüm 11'inde yer alan bir trigonometrik tablodur. Esasen sinüs fonksiyonunun değer tablosuna eşdeğerdir. Astronomi de dahil olmak üzere birçok pratik amaç için yeterince kapsamlı olan en eski trigonometrik tablodur. 8. ve 9. yüzyıllardan beri sinüs ve diğer trigonometrik fonksiyonlar, İslam matematiği ve astronomisinde kullanılmış ve sinüs tablolarının üretiminde reformlar yapılmıştır. Daha sonra Muhammed ibn Musa el-Harezmi ve Habeş el-Hâsib bir dizi trigonometrik tablo üretmiştir.