İçeriğe atla

Çember

Çember
Bir çember

                     çevre: C                     çap: D                     yarıçap: R                     merkez veya orijin: O

TipKonik kesit
Simetri grubuO(2)
AlanπR2
ÇevreC = 2πR

Çember ya da dönge, düzlemde sabit bir noktaya eşit uzaklıkta bulunan noktaların kümesinin oluşturduğu yuvarlak, geometrik şekil. Çemberin çevrelediği 2 boyutlu alana daire denir.

Tanımda bahsi geçen sabit noktaya çemberin merkezi, eşit uzaklıkların her birine yarıçap, yarıçapın iki katı uzunluğa ise çap denir. Genellikle, merkez o, yarıçap r, çap ise R (Büyük r harfi) ile gösterilir (R=2r). Çemberde sonsuz yarıçap ve çap vardır. Yarıçap ve çapların uzunlukları sabittir.

Çember üzerindeki iki noktayı birleştiren doğru parçasına ise kiriş adı verilir. Çemberde sonsuz sayıda kiriş vardır. Kirişlerin uzunlukları farklı olabilir. Bu anlamda, merkeze göre birbirine simetrik olan iki noktayı birleştiren doğru parçasının uzunluğu aynı zamanda çapa eşittir. Çap en uzun kiriştir.

Analitik geometride çemberin denklemi x y-koordinat sisteminde şu biçimde yazılabilir:

Eğer çemberin merkezi koordinat sistemi içinde (0,0) noktası olursa, yukarıdaki ifade

şeklinde de yazılabilir ve bu çembere yarıçap 1 olduğunda birim çember denir.

Çevre formülü

Yarıçapı r olan bir çember için çevre sayısının formülünden bulunur

formülüyle bulunur.

Çemberin özellikleri

  • Çemberin iki noktası arasında kalan parçaya çember yayı (çember parçası) denir.
  • Bir kesenin, çember içerisinde kalan parçasına kiriş denir.
Bir AB kirişi ve gösterilişi.
  • Çemberi iki eş parçaya ayıran doğru parçasına çap denir. Merkezden geçen kiriş, çaptır.
Bir çemberin çapı (R).
  • Merkez ile, çember üzerindeki bir noktayı birleştiren doğru parçasına yarıçap denir. Küçük r (r) ile gösterilir.
  • Çember, bulunduğu düzlemi; çemberin iç bölgesi, dış bölgesi ve kendi olmak üzere üç bölgeye ayırır. Çemberin kendi ve iç bölgesinin birleşimine daire denir.

Çemberin açıları

Çemberin merkezi, merkez açının köşesidir. Çevre açının köşesi, çemberin üzerindedir. Merkez açının içinde kalan çember parçasına, merkez açının gördüğü yay; çevre açının içinde kalan çember parçasına, çevre açının gördüğü yay denir. Merkez açının kenarlarının, çemberi kestiği noktaların arasındaki yaylardan birisi majör, yani büyük çember yayı, diğeri de minör, yani küçük çember yayıdır. Merkez açının gördüğü yay, minör yaydır. Merkez açının ölçüsü, 0 ile 180 derece arasında, çember yaylarının ise, 0 ile 360 derece arasındadır.

Bir AB çember yayı ve gösterilişi.
Bir çemberin yarıçapı (r).

Ayrıca bakınız

İlgili Araştırma Makaleleri

Altın oran, matematikte iki miktardan büyük olanın küçüğe oranı, miktarların toplamının miktarları büyük olanına oranı ile aynı ise altın orandır. Altın oran aynı zamanda antik çağdan bu yana sanat ve mimaride en iyi uyum ve oranları veren düzen bağıntısı olarak kabul edilmekteydi.

<span class="mw-page-title-main">Sinüs teoremi</span> Öklid geometrisinde üçgenlerle ilgili bir teorem

Sinüs teoremi, bir çembersel üçgende bir kenar ve bu kenar karşısındaki açının sinüsleri oranı sabittir. Sinüs, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün birbirine oranıdır.

Alan veya yüz ölçümü, bir yüzeyin uzayda kapladığı iki boyutlu yer miktarını ölçen bir büyüklüktür. SI birim sisteminde temel alan birimi metrekaredir (m²). Diğer alan birimleri bundan türetilebilir:

Ar = 100 metrekare (m²)
Dekar = 1000 metrekareye (m²)
Hektar = 10.000 metrekare (m²)
Kilometrekare = 1.000.000 metrekare (m²)
<span class="mw-page-title-main">Konikler</span> bir huniyi ve düzlemi kesiştirince oluşan eğri

Konik kesit, eliptik veya dairesel bir çift taraflı koninin, düzlemle kesitinden meydana gelen eğriler. Bunlar, çember, elips, parabol ve hiperboldür.

<span class="mw-page-title-main">Koni</span>

Koni, matematikte, bir düzlem içindeki dairenin her noktasını, düzlem dışındaki bir noktaya birleştiren doğru parçalarının meydana getirdiği geometrik şekil.

<span class="mw-page-title-main">Parabol</span> ikinci dereceden olan fonksiyonların grafiği

Parabol, bir düzlemde alınan sabit bir "d" doğrusu ile sabit bir "F" noktasından eşit uzaklıktaki noktaların geometrik yerleştirilmesidir. Cebirde ise y=ax2+bx+c şeklindeki ikinci derece fonksiyonları grafiği olarak bilinir.

<span class="mw-page-title-main">Düzgün dairesel hareket</span>

Düzgün dairesel hareket, sabit bir kuvvetin etkisinde, bir çember üzerinde süratin değişmediği harekettir.

<span class="mw-page-title-main">Çap</span> çemberin merkezinden geçen ve çemberi iki eşit parçaya bölen doğru çizgisi

Çap, bir çemberin merkezinden geçen ve çemberi iki eşit parçaya bölen doğru çizgisine verilen addır ve yarıçap'ın 2 katı uzunluğundadır. ile çarpılırsa o çemberin çevresi bulunur.

<span class="mw-page-title-main">Açı</span> başlangıç noktaları ortak olan iki ışının birleşiminin oluşturduğu geometrik şekil

Açı, başlangıç noktaları ortak olan iki ışının birleşimidir. Bu tanımda açıyla ilgili olarak başlangıç noktası olması ve iki ışından oluşması özellikleri ön plana çıkmaktadır. Işınların kesiştiği noktaya "açının köşesi", ışınlara ise "açının kenarı" denir. Açı radyan ve derece gibi birimlendirmelerle ölçülür. Radyan ölçüsü açı köşesinden bir birim uzaklıkta elde edilen yayın uzunluğunu ölçen birimdir. Derece ise daire şeklinde olan ve birim çemberde 2 uzunluğa sahip yayın 360 derece olan tanımlanmasıyla elde edilir. Radyan ve derece arasında

<span class="mw-page-title-main">Sinüs (matematik)</span>

Matematikte sinüs, trigonometrik bir fonksiyon. Sin kısaltmasıyla ifade edilir.

<span class="mw-page-title-main">Radyan</span>

Radyan, bir dairede yarıçap uzunluğundaki yay parçasını gören merkez açıya eşit açı ölçme birimidir. 1 radyan 180/π ya da yaklaşık 57,2958 derecedir (57°17′45″).

<span class="mw-page-title-main">Daire</span> düzlem şekil

Daire ya da dönge, çemberin içinde kalan alana verilen isimdir. Burada alandan kasıt, bir çemberin çevrelediği noktaların kümesi olmasıdır. Bir dairenin açık daire ya da kapalı daire olmasını dairenin sınırlarını oluşturan çemberin daireye dahil olup olmadığı belirler; çember daireye dahilse kapalı daire, değilse açık dairedir.

<span class="mw-page-title-main">Yarıçap</span> merkezinden çevresine bir daire veya küre içinde bölüm veya yüzeyi ile uzunluğu

Yarıçap, bir daire veya kürenin özeğinin (merkezinin) çemberine olan mesafesidir. Çapın yarısına eşittir.

<span class="mw-page-title-main">Kardiyoit</span>

Matematikte kardiyoit veya yürek eğrisi, sabit bir çember üzerinde yuvarlanmakta olan aynı yarıçaplı ikinci bir çember üzerindeki herhangi bir noktanın izlediği eğridir. İsmi Yunanca kardia (kalp) ve eidos (şekil) kelimelerinin birleşiminden oluşur. Kalp (♥) şeklini anımsattığı için bu ismi almıştır. Kardiyoit ismini ilk kullanan, 18. yüzyıl İtalyan matematikçisi Johann Castillon olmuştur.

<span class="mw-page-title-main">Jeostatik yörünge</span> ekvator üstünde bulunup Dünyanın dönüşünü takip eden yörünge

Jeostatik yörünge ya da Yer sabit yörünge, Dünya’nın çevresinde Dünya ile aynı dönme süresine sahip ve yerden bakılınca uzayda konumu sabit olan yapay uydu için hesaplanan yörünge. Yer sabit yörünge için yer yüzeyinden itibaren yükseklik sınırı 35.786 kilometredir. Bu yörüngede yer alan bir cisim, yerdeki sabit bir gözlemciye gökyüzündeki sabit bir nokta şeklinde görülecektir.

Açısal frekans periyodik harekette birim zaman içinde kaç radyan olduğunun ölçüsüdür.

<span class="mw-page-title-main">Birim çember</span> trigonometri ve mampo da çok işlemi olmuş bir çemberdi ve çok kolay bir yönetimi vardır birim çemberi matematiğin temelini olustur bu yüzden çok önemli bir cemberdir

Birim çember Matematikte, yarıçapı bir birim olan çembere birim çember denir. Çoğunlukla, özellikle trigonometride, Öklid düzlemine göre Kartezyen koordinat sisteminde, merkezi orijin üzerinde (0,0) olan ve yarıçapı bir birim olan çemberdir. n birim çember sıklıkla S1; olarak ifade edilir. Genellikle daha büyük boyutları ise birim küredir. (x, y) birim çember üzerinde bir nokta olduğunda, |x| ve |y|, dik olan ve hipotenüsü bir olan üçgenin diğer kenar uzunluklarıdır. Bu nedenle, Pisagor teoremine göre, x ve y bu denklemi karşılamaktadır.

<span class="mw-page-title-main">Çift merkezli dörtgen</span>

Öklid geometrisinde, bir çift merkezli dörtgen, hem bir iç teğet çembere hem de çevrel çembere sahip olan bir dışbükey (konveks) dörtgendir. Bu çemberlerin çevreleri, yarıçapları ve merkezlerine sırasıyla iç çap (inradius) ve çevrel çap (circumradius), iç merkez (incenter) ve çevrel merkez (circumcenter) denir. Tanımdan, çift merkezli dörtgenlerin hem teğetler dörtgeninin hem de kirişler dörtgeninin tüm özelliklerine sahip olduğu anlaşılmaktadır. Bu dörtgenler için diğer isimler kiriş-teğet dörtgeni ve iç teğet ve dış teğet dörtgenidir. Ayrıca nadiren çift çemberli dörtgen ve çift işaretlenmiş dörtgen olarak adlandırılmıştır.

<span class="mw-page-title-main">Episikloid</span> Matematikte bir yuvarlanma eğrisi

Geometride, bir episikloid, sabit bir çemberin etrafında kaymadan yuvarlanan bir çemberin çevresi üzerinde seçilen bir noktanın yolunu izleyerek üretilen bir düzlem eğrisidir -buna episikl (epicycle) denir. Bu, yuvarlanma eğrisinin özel bir türüdür.

Geometride, bir çokgenin yarı çevresi, çevre uzunluğunun yarısıdır. Çevreden doğrudan türetilebilmesine rağmen, yarı çevre üçgenler ve diğer şekiller için kullanılan formüllerde oldukça sık görülür ve ayrı/özel bir isim verilir. Yarı çevre, bir formülün parçası olarak ortaya çıktığında, genellikle s harfiyle gösterilir.