İçeriğe atla

Çay yaprağı paradoksu

Çay yaprakları kenarlar yerine ortada ve dipte toplanırlar.
Mavi çizgi çay yaprakalrını orta dibe çeken ikincil akımı göstermektedir.
Paradoks, 1926 yılında Albert Einstein tarafından çözülmüştür.

Çay yaprağı paradoksu, içinde çay yaprakları bulunan bir çay bardağı karıştırıldığında yaprakların neden bardağın kenarlarına değil de tam tersi bardağın ortasına çöktüğünü inceleyen paradokstur. İlk çözüm Albert Einstein'ın 1926 yılında yayınladığı ve nehir kenarlarındaki erozyonu açıkladığı makalesinden çıkarılmıştır (Baer Kanunu).[1][2]

Açıklama

Karıştırma işlemi sıvının bardağın içinde dönmesine neden olur. Sıvının eğrisel yolunu takip edebilmesi için sıvıyı merkeze doğru çeken bir mekezcil kuvvete ihtiyaç vardır (çay tepsisini kendi etrafında döndürürken bardakların saçılmasına engel olan çekme kuvveti gibi). Bu kuvvet ortaya doğru azalan basınç tarafından sağlanır.

Ancak, dibe yakın yerlerde ve dış yüzeyde sürtünme kuvvetinden dolayı sıvı yavaşlar. Bu sebeple merkezkaç kuvveti basınç değişiminden kaynaklanan kuvveti burada yenemez, dolayısıyla burada sıvının akışında basınç farklılığı merkezkaç kuvvetinden daha etkili hale gelir. Buna sınır katmanı ya da Ekman Katmanı denir.[3]

Merkezkaç kuvvetinden dolayı basınç orta kısımda kenarlara göre daha fazladır. Eğer tüm sıvı katı gibi tek parça halinde dönüyor olsaydı, içe doğru olan merkezcil kuvvet dışa doğru olan merkezkaç kuvvete eşit olur dolayısıyla içe doğru ya da dışa doğru bir hareket gözlemlenmezdi.

Çay bardağı gibi, dönmenin diplerde daha yavaş olduğu kaplarda, basınç etkisi baskın çıkar ve içeri ve dibe doğru bir akım oluşturur. Üst taraflarda, sıvı içe değil dışa doğru akar. Bu ikinci akış bardağın içine doğru yönlenir ve yaprakları ortaya toplar, sonra yukarı dışa ve kenardan tekrar içe doğru akar. Yapraklar daha ağır olduğundan yukarı doğru hareket edemediklerinden ortada kalırlar. İlk dönüme akışı ile birleştiğinde, yapraklar içe doğru dairesel bir şekilde aşağı çökerler.[2]

Uygulamaları

Bu fenomen alyuvarları kan plazmasından ayırmak için geliştirilmiş yeni bir yöntemde,[4][5] atmosferik basınç sistemlerinin anlaşılmasında[6] ve bira üretimi sırasında çöktürme işlemlerinde kullanılmaktadır.[7]

Ayrıca bakınız

  • Baer Kanunu
  • Ekman Kanunu

Kaynakça

  1. ^ Bowker, Kent A. (1988). "Albert Einstein and Meandering Rivers". Earth Science History. 1 (1). 24 Şubat 2010 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Aralık 2008. 
  2. ^ a b Einstein, Albert (Mart 1926). "Die Ursache der Mäanderbildung der Flußläufe und des sogenannten Baerschen Gesetzes". Die Naturwissenschaften. 14 (11). Berlin / Heidelberg: Springer. ss. 223-4. Bibcode:1926NW.....14..223E. doi:10.1007/BF01510300.  English translation: The Cause of the Formation of Meanders in the Courses of Rivers and of the So-Called Baer’s Law 25 Ocak 2009 tarihinde Wayback Machine sitesinde arşivlendi., accessed 2008-12-28.
  3. ^ "CEE 262A Hydrodynamics Lecture 18" (PPT). 2007. s. 35. Erişim tarihi: 29 Aralık 2008. []
  4. ^ Arifin, Dian R. (20 Aralık 2006). "Microfluidic blood plasma separation via bulk electrohydrodynamic flows". Biomicrofluidics. 1 (1). American Institute of Physics. ss. 014103 (CID). doi:10.1063/1.2409629. PMC 2709949 $2. PMID 19693352. 9 Aralık 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Aralık 2008. Diğer özetScience Daily (17 Ocak 2007). 
  5. ^ Pincock, Stephen (17 Ocak 2007). "Einstein's tea-leaves inspire new gadget". ABC Online. 7 Ocak 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Aralık 2008. 
  6. ^ Tandon, Amit. "Einstein's Tea Leaves and Pressure Systems in the Atmosphere" (PDF). 4 Mart 2016 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 29 Aralık 2008. 
  7. ^ Bamforth, Charles W. (2003). Beer: tap into the art and science of brewing (2.2yayıncı=Oxford University Press bas.). s. 56. ISBN 978-0-19-515479-5. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

<span class="mw-page-title-main">Su</span> H2O formülüne sahip kimyasal bileşik, yaşam kaynağı

Su, Dünya üzerinde bol miktarda bulunan ve tüm canlıların yaşaması için vazgeçilmez olan, kokusuz ve tatsız bir kimyasal bileşiktir. Sıklıkla renksiz olarak tanımlanmasına rağmen kızıl dalga boylarında ışığı hafifçe emmesi nedeniyle mavi bir renge sahiptir.

<span class="mw-page-title-main">Maddenin hâlleri</span> maddenin farklı aşamalarında yer alan farklı hâlleri

Bir fizik terimi olarak maddenin hâli, maddenin aldığı farklı fazlardır. Günlük hayatta maddenin dört farklı hâl aldığı görülür. Bunlar; katı, sıvı, gaz ve plazmadır. Maddenin başka hâlleri de bilinir. Örneğin; Bose-Einstein yoğunlaşması ve nötron-dejeneje maddesi. Fakat bu hâller olağanüstü durumlarda gerçekleşir, çok soğuk ya da çok yoğun maddelerde. Maddenin diğer hâllerininde, örneğin quark-gluon plazmalar, mümkün olduğuna inanılır fakat şu an sadece teorik olarak bilinir. Tarihsel olarak, maddenin özelliklerindeki niteleyici farklılıklara dayanarak ayrım yapılır. Katı hâldeki madde bileşen parçaları ile bir arada tutulur ve böylece sabit hacim ve şeklini korur. Sıvı hâldeki madde hacmini korur fakat bulunduğu kabın şeklini alır. Bu parçalar bir arada tutulur ama hareketleri serbesttir. Gaz hâlindeki madde ise hem hacim olarak hem de şekil olarak bulunduğu kaba ayak uydurur.Bu parçalar ne beraber ne de sabit bir yerde tutulur. Maddenin plazma hâli ise, nötr atomlarda dahil, hacim ve şekil olarak tutarsızdır. Serbestçe ilerleyen önemli sayıda iyon ve elektron içerirler. Plazma, evrende maddenin en yaygın şekilde görülen hâlidir.

<span class="mw-page-title-main">Pompa</span>

Pompa, genelde elektrik enerjisini hidrolik enerjiye çevirerek sıvıları veya bazen çamur gibi bulamaçları, mekanik güçle hareket ettiren makinadır.

Burada Vikipedi'de bulunan paradoksların bir listesini bulacaksınız. Listedeki paradokslar temalarına göre sınıflandırılmıştır.

<span class="mw-page-title-main">Dolaşım sistemi</span> hayvanlarda kan dolaşımını sağlayan organ sistemi

Dolaşım sistemi veya kardiyovasküler sistem maddelerin vücuttaki dolaşımını sağlayan organ sistemidir.

<span class="mw-page-title-main">Kanat</span> hayvan ya da cansız bir objenin uçmasını sağlayan organ ya da parça

Kanat, uçma veya hareket etme amacıyla kullanılan ve genellikle kuşlar, böcekler veya uçaklar gibi hayvanlar veya araçlar tarafından kullanılan bir yapıdır. Kanatlar, aerodinamik prensiplere dayalı olarak tasarlanmış ve şekillendirilmiştir, böylece hava akışını kontrol ederek uçuş veya hareket sağlayabilirler. Kanat belli bir evrimsel ve biyolojik süreç sonrası oluşabilmesinin yanı sıra beşeri olarak da modellenebilip uçmak veya bir sıvı içerisinde hareket sağlamak için de özelleştirilebilmektedir.

<span class="mw-page-title-main">Viskozite</span> bir sıvının fiziksel özelliği

Viskozite, akmazlık veya ağdalık, akışkanlığa karşı direnç. Viskozite, bir akışkanın, yüzey gerilimi altında deforme olmaya karşı gösterdiği direncin ölçüsüdür. Akışkanın akmaya karşı gösterdiği iç direnç olarak da tanımlanabilir. Viskozitesi yüksek olan sıvılar ağdalı olarak tanımlanırlar.

<span class="mw-page-title-main">Kanat profili</span>

Kanat profili veya aerofoil, kanat, yelken, dümen, pervane kanadı, rotor veya türbin gibi bir akışkan içindeki hareketi kaldırma kuvveti oluşturabilen nesnenin kesit şeklidir.

<span class="mw-page-title-main">Sürükleme</span>

Sürükleme; akışkanlar mekaniğinde bir cismin, bir akışkan içindeki hareketine gösterdiği direnç. Sürükleme İngilizce drag sözcüğüne atfen "D" harfi ile gösterilir.

<span class="mw-page-title-main">Türk çayı</span> Türkiyeye özgü çay

Türk çayı, Türklere özgü bir çay pişirme ve sunma yöntemidir.

<span class="mw-page-title-main">Menderes</span> nehrin yatağındaki kıvrım

Menderes,, bir nehrin yatağında meydana gelen kıvrımlara verilen addır.

Mach prensibi, belirli bir bölgedeki hareketin başka bir referans noktasına göre hareketin belirlenmesi büyük ölçekteki madde dağılımına dayalı olduğunu belirtir. Teorik fizikteki, yerçekimi teorilerinden olan Mach prensibi Einstein tarafından isimlendirilmiştir. Fikir filozof Ernst Mach'a atfedilir.

Dean sayısı (De), akışkanlar mekaniği alanında, özellikle eğri borular ve kanallarda meydana gelen akış dinamiklerinin incelenmesinde kullanılan bir boyutsuz sayıdır. Bu terim, Britanyalı bilim insanı William Reginald Dean'in adını taşımaktadır. Dean, laminer akış durumunda, düz bir borudaki Poiseuille akışından, çok küçük bir eğrilik içeren bir boruya kadar olan akışın teorik çözümünü bir bozulma yöntemi kullanarak ilk kez sunmuştur. Bu çalışma, eğri borulardaki akış mekaniklerinin anlaşılmasında temel bir adım olarak kabul edilir.

<span class="mw-page-title-main">Roket motoru</span>

Roket motoru, genellikle yüksek sıcaklıktaki gaz olan yüksek hızlı itici bir sıvı jeti oluşturmak için tepkime kütlesi olarak depolanmış roket itici gazlarını kullanır. Roket motorları, Newton'un üçüncü yasasına göre kütleyi geriye doğru fırlatarak itme üreten tepki motorlarıdır. Çoğu roket motoru, gerekli enerjiyi sağlamak için reaktif kimyasalların yanmasını kullanır, ancak soğuk gaz iticileri ve nükleer termal roketler gibi yanmayan biçimleri de mevcuttur. Roket motorları tarafından tahrik edilen araçlara genellikle roket denir. Roket araçları, çoğu yanmalı motorun aksine kendi yükseltgen taşır, bu nedenle roket motorları, uzay aracını ve balistik füzeleri itmek için bir boşlukta kullanılabilir.

<span class="mw-page-title-main">Bira musluğu</span>

Bira musluğu, fıçı bira musluğu ya da bira makinesi musluğu gibi isimler ile bilinen, özellikle fıçı biradaki biranın serbest kalmasını sağlayan vana ve musluğa verilen isimdir. Ayrıca başka bağlamlarda yine büyük miktardaki biranın, istenen ebatlardaki daha küçük bardaklara servis edilmesini sağlayan valf, vana, tapa ya da fıçı tapaları içinde aynı isim kullanılıyor olabilir. Aslında terim, geleneksel ahşap fıçılarda bulunan vana ya da tapalar için türetilmiştir. Bir musluktan servis edilen bira ise fıçı bira ya da ale olarak bilinir. Ahşap fıçıların yerini günümüzde İngilizce keg adı verilen, alüminyum veya çelikten imal edilen fıçı(ya da varil)lar almıştır. Kullanıldıkları varil ya da fıçıya göre pek çok farklı tür ya da stilde bira musluğu bulunmaktadır.

<span class="mw-page-title-main">Faz (madde)</span> Fiziksel bilimlerde, bir faz bir malzemenin fiziksel özelliklerini esas olarak eşit bir şekilde madde boyunca dağılan bir sistemdir. Fiziksel özelliklerinin örneklerinden üç tanesi, yoğunluk içermesi , mıknatıslanma ve kimyasal bileşimi inde

Fiziksel bilimlerde faz; bir malzemenin fiziksel özelliklerinin her noktasında aynı olduğu bölgedir/alandır. Fiziksel özelliklerinin örneklerinden üç tanesi, yoğunluk içermesi, mıknatıslanma ve kimyasal bileşimi indeksi. Basit bir açıklama ile bir faz fiziksel olarak ayrı, kimyasal olarak yeknesak ve (genellikle) mekanik ayrılabilir malzemeli bir bölge olmasıdır. Bir cam kavanoz buz ve sudan oluşan bir sistemde, buz küpleri birinci faz, su ikinci faz ve suyun üstünde bulunan nem ise üçüncü fazdır. Cam kavanoz ise başka bir ayrı aşamasıdır. Faz terimi bazen maddenin hali olarak eş anlamlı bir şekilde kullanılabilir. Ancak bir maddenin aynı halde çok sayıda karışmayan fazı olabilir. Ayrıca, faz terimi bazen bir faz diyagramı için üzerinde sınır ile basınç ve sıcaklık gibi durum değişkenler açısından sınırı çizilmiş denge durumunda bir dizi oluşturmak için kullanılır. Faz sınırları gibi katı veya başka bir kristal yapısından daha ince değişikliğine sıvıdan bir değişiklik olarak maddenin organizasyon değişiklikleriyle ilgili olduğundan bu son kullanım durumuna eş anlamlısı olarak "faz" kullanımına benzer. Ancak, madde ve faz diyagramı kullanımların hali yukarıda verilen ve amaçlanan anlam terim kullanıldığı bağlamdan kısmen tespit edilmelidir resmi tanımı ile orantılı değildir. Fazın çeşitleri Farklı fazlar, gaz, sıvı, katı, plazma veya Bose-Einstein yoğuşma ürünü olarak maddenin farklı durumlar olarak tarif edilebilir. Maddenin katı ve sıvı formda diğer haller arasındaki faydalı mezofazlar.

<span class="mw-page-title-main">Çift taraflı Onsager bağıntıları</span>

Termodinamikte, çift taraflı Onsager bağıntıları, termodinamik sistemlerde termodinamik denge kavramının var olduğu yerlerde denge dışındaki akışlar ve kuvvetler arasındaki belirli oranların eşitliğini ifade eder.

<span class="mw-page-title-main">Kum barı</span>

Kum barı, dışbükey kıyı boyunca bir akarsu kıvrımının iç kıvrımındaki alüvyon birikintinin birikmesi olarak adlandırılır. Kum barları, dolambaçlı ve kıvrımlı nehirlerde bol miktarda bulunur. Hilal şeklini alırlar ve akarsu akışın kıvrımlarının içinde bulunurlar. Kum barı, nehir adalarından daha küçük olmasına rağmen, oluşum ve bileşim bakımından nehir adalarına çok benzer.