İçeriğe atla

Çarpımsal basamak

Sayılar kuramında, verili a tamsayısının pozitif ve 1'den büyük bir n tam sayısına göre çarpımsal basamağı (ya da mertebesi), mod n 'de ak 'yı 1 yapan en küçük ve pozitif k tam sayısıdır. Örneğin mod 5'te 2'nin çarpımsal basamağı 4'tür; mod 39'da 2'nin çarpımsal basamağı 12'dir; mod 561'de 2'nin çarpımsal basamağı 560'tır.

Gösterilebilir ki, a ve n aralarında asal değilse böyle bir k sayısı yoktur. Aksi durumda, her zaman bir çarpımsal basamak vardır; bu şöyle ispatlanabilir: öyle iki pozitif tam sayı vardır ki (bunlar s ve t olsun; s daha büyük olsun) as ve at mod n 'de denktirler. a ve n aralarında asalsa at ile n de aralarında asaldır. Öyleyse denkliğin iki tarafından at sadeleştirilebilir ve as-t mod n 'de 1'e denk bulunur.

Diğer taraftan, n asalsa ve n a 'yı bölmüyorsa, a 'nın mod n 'de çarpımsal basamağı n-1 'dir. Bunu söyleyen teorem, Fermat'nın Küçük Teoremi'dir. n asal değilse, a ile n aralarında asal olsalar bile, a 'nın çarpımsal basamağına ilişkin bir şey söylemek zordur. Yukarıdaki ikinci örneğe bakınız.

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

<span class="mw-page-title-main">Aritmetiğin temel teoremi</span>

Matematik'te aritmetiğin temel teoremi, aynı zamanda benzersiz çarpanlara ayırma teoremi ve asal çarpanlara ayırma teoremi olarak da adlandırılır, şunu belirtir: 1'den büyük her tamsayı, benzersiz bir şekilde asal sayıların üslerinin çarpımı olarak gösterilebilir.

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

<span class="mw-page-title-main">İkiz asallar</span>

İkiz asallar, aralarındaki fark 2 olan asal sayılar. Örneğin 3-5, 5-7, 11-13 ikiz asallardır. 2-3 çifti hariç iki asal sayı arasındaki fark da zaten en az 2 olabilir.

2 (iki) bir sayı, rakam ve gliftir. 1'den sonraki ve 3'ten önceki doğal sayıdır. En küçük ve hatta yegâne çift asal sayıdır. Bir dualitenin temelini oluşturduğundan, birçok kültürde dini ve manevi öneme sahiptir.

Fermat'nın küçük teoremine göre her p asal sayısı, a tam sayı olmak üzere, her a pa sayısını böler. Bu, modüler aritmetik sembolleriyle

Bileşik sayı, en az iki asal sayının çarpımı olarak yazılabilen pozitif tam sayıdır.

14 = 1 x 14 = 2 x 7.
<span class="mw-page-title-main">Parite (matematik)</span> hh

Parite, matematikte herhangi bir tam sayının çift ya da tek olması durumudur. Çift sayılar, 2 ile kalansız bölünebilen sayılardır. Tek sayılar ise 2 ile kalansız bölünemeyen sayılardır. Örneğin onluk sistemde 4 ve 8 rakamlarının her ikisi de çift olduğu için "aynı pariteye sahip" kabul edilirler.

▪ Çift doğal sayılar: 0, 2, 4, 6, 8,...
▪ Tek doğal sayılar: 1, 3, 5, 7, 9,...
▪ 2n = 0 eşitliğini sağlayan bir tam sayı mevcuttur: 2 × 0 = 0.
▪ 2n + 1 = 0 eşitliğini sağlayacak bir n tam sayısı yoktur.
▪ Birden fazla basamaklı sayıların birler basamağında 0'ın olması, bu sayıların asal çarpanları arasında 2 ve 5'in olduğunu, dolayısıyla çift sayı olduklarını gösterir.

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

Bir asal kök modülü n sayılar teorisindeki modüler aritmetikten bir kavramdır. Eğer olan bir tam sayı ise, n formuna göre aralarında asal sayılar mod n'e göre çarpılarak, bir grup oluşturacak şekilde yapılan işlem, veya olarak gösterilir. Bir asal sayı için ve ise, bu grup ancak ve ancak veya 'ya denktir. Bu döngüsel grubun bir üreteci asal kök modülü n veya 'in bir asal elemanı'dır şeklinde tanımlanır.

abc sanısı veya abc konjektürü sayılar teorisindeki bir sanı yani konjektürdür. 1985'te Joseph Oesterlé ve David Masser tarafından ortaya atılmıştır. Biri diğer ikisinin toplamı şeklinde ifade edilen üç tam sayının özellikleri üzerine kurulmuştur. Problemi çözmek için açık bir strateji bulunmadığı halde, sanı bazı ilginç sonuçları sayesinde tanınmıştır.

Matematikte, birkaç fonksiyon ya da fonksiyon gruplarının kendi isimleri yeterli öneme layıktır. Bu makaleler fonksiyonları açıklamak için olan daha ayrıntılı olarak gösteren bir listedir. İstatistik dışı ve matematiksel fizik gelişmeleri sonucu özel fonksiyonlar büyük bir teori olmuştur. Modern bir, soyut incelik fonksiyon uzayıları geniş karşılaştırma görünümü, sonsuz-boyutlu ve 'isimsiz' fonksiyonlar içindeki ve simetri ya da ilişki harmonik analiz ve grup temsilileri gibi özellikler ile özel fonksiyonlar ile seçilmiştir.

Matematiğin kombinatorik dalında, the ninci Bell sayısı, n eleman'lı bir küme'nin parçalanış sayısını verir veya eşdeğeri, benzerlik ilişkisi'dir. B0 = B1 = 1 ile başlar, ilk birkaç Bell sayısı şunlardır:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, ….

Sayı teorisinde, asal çarpanlara ayırma bir bileşik sayının, çarpıldıklarında yine aynı sayıyı verecek şekilde, bir ve kendisi dışındaki bölenlerine ayrılmasıdır.

<span class="mw-page-title-main">Çarpanlara ayırma</span>

Çarpanlara ayırma, bir polinomun, tam sayının ya da matrisin kendisini oluşturan bileşenlerin çarpımı şeklinde yazılmasıdır. Örneğin 15 sayısı 3 ve 5 asal sayılarının çarpımı şeklinde yazılabilir: 3 × 5 ya da x2 − 4 polinomu (x − 2)(x + 2) şeklinde yazılabilir.

Merkle-Hellman kripto sistemi, 1978 yılında Martin Hellman ve Ralph Merkle tarafından geliştirilen ilk açık anahtarlı kriptosistemlerden biridir. RSA'dan daha hızlı gerçekleştirilebilmesine rağmen Adi Shamir tarafından 1982'de güvensiz olduğu gösterilmiştir.

<span class="mw-page-title-main">Modüler aritmetik</span>

Modüler aritmetik, tam sayılarda kullanılan bir hesap yöntemidir. Saatin her on iki saatte bir yinelenmesi gibi modül denen belli bir değere gelindiğinde yeniden sıfıra dönülmesiyle olur.

Bu, Wikipedia'da yer alan sayı teorisi konularıyla ilgili sayfaların bir listesidir.

<span class="mw-page-title-main">Asal sayı teoremi</span> sayılar teorisinde bir teorem

Asal sayı teoremi (PNT), asal sayıların pozitif tam sayılar arasındaki asimptotik dağılımını tanımlar. Bunun meydana gelme hızını tam olarak ölçerek, asal sayıların büyüdükçe daha az yaygın hale geldiği şeklindeki sezgisel fikri resmîleştirir. Teorem, 1896'da Jacques Hadamard ve Charles Jean de la Vallée Poussin tarafından bağımsız olarak Bernhard Riemann'ın ortaya attığı fikirler kullanılarak kanıtlandı.

<span class="mw-page-title-main">Çin kalan teoremi</span>

Matematikte Çin kalan teoremi, bir n tamsayısının birkaç tam sayıya bölümünden kalanlar biliniyorsa, n'in bu sayıların çarpımına bölümünden kalanın bulunabileceğini belirtir. Buradaki koşul, n'e bölümlerinden kalanlarını bildiğimiz sayıların birbirleriyle aralarında asal olmaları gerekliliğidir.