İçeriğe atla

Çözülme

Çözülme, çözücünün moleküller ile etkileşimini tanımlar. Hem iyonize hem de yüksüz moleküller, çözücü ile güçlü bir şekilde etkileşir ve bu etkileşimin gücü ve doğası, çözücünün viskozite ve yoğunluk gibi özelliklerini etkilemenin yanı sıra çözünürlük, reaktivite ve renk dahil olmak üzere çözülen maddenin birçok özelliğini etkiler.[1] Çözülme sürecinde iyonlar eş merkezli bir çözücü kabuğu ile çevrelenir. Çözülme, çözücü ve çözünen moleküllerin çözünme kompleksleri halinde yeniden düzenlenmesi sürecidir.[2]

Çözülme, bağ oluşumunu, Hidrojen bağını ve Van der Waals kuvvetlerini içerir. Bir çözülen maddenin su ile çözülmesine hidrasyon denir.[3]

Çözünmeyi Çözünürlükten Ayırt Etme

IUPAC tanımına göre, çözünen maddenin çözücü ile etkileşimine solvasyon(çözülme) denir. Solvasyon, çözücü moleküllerin çevrelediği ardından da çözünen iyonlarıyla ya da molekülleriyle etkileşime girdiği işlemdir. Kararlılık sabitleri, çözeltideki komplekslerin konsantrasyonunu hesaplamak için gereken bilgileri sağlar. Solvasyon, ayrıca çözünmeyen bir malzemeye uygulanabilmektedir. Bu duruma örnek olarak iyon değişim reçinelerinde fonksiyonel grupların çözünmesini verebiliriz. Bu reçineler suda sertli gidermek için, kalsiyum ve magnezyum tuzlarını, yüksek çözünürlükte sodyum tuzlarıyla yer değiştirir.

Çözünme ve çözünürlük kavram olarak birbirinden farklıdır. Çözünme bir maddenin kimyasal özelliklerini kaybetmeden serbest moleküler halinde dağılması demektir ve bu sürece de çözünme hızı denir. Çözünürlük, sabit sıcaklıktaki bir maddenin çözünme hızının çökelme hızına eşit olduğu andaki derişimidir. Çözünme ve çözünürlüğün birimlerin dikkate alındığında ikisi arasındaki ayrım daha net hale gelecektir. Çözünme hızı için kullanılan birim mol/s'dir. Çözünürlük için kullanılan birim ise hacim başına kütle (mg/mL), molarite (mol/L)' dir.[4]

Çözücüler ve Moleküller Arasındaki Etkileşim

Çözülme, farklı moleküller arası etkileşim türlerini içerir: hidrojen bağı, iyon-dipol etkileşimleri ve Van der Waals kuvvetleri (dipol-dipol, eyletik çiftucay döngüsü ve eyletik dipol kaynaklı dipol etkileşimlerinden oluşur). Bu kuvvetlerden hangisinin rol oynadığı çözücünün ve çözülen maddenin moleküler yapısına ve özelliklerine bağlıdır. Çözücü ve çözülen madde arasındaki bu özelliklerin benzerliği veya tamamlayıcı karakteri, bir çözülen maddenin belirli bir çözücü tarafından ne kadar iyi çözülebileceğini belirler.

Çözücü polarlığı, belirli bir çözülen maddeyi ne kadar iyi çözdüğünü belirlemede en önemli faktördür. .Polar çözücüler, moleküler dipollere sahiptir, yani çözücü molekülün bir kısmı, molekülün başka bir kısmından daha fazla elektron yoğunluğuna sahiptir. Daha fazla elektrona yoğunluğuna sahip kısım kısmi bir negatif yük yaşarken, daha az elektron yoğunluğuna sahip kısım kısmi bir pozitif yük yaşayacaktır. Polar çözücü molekülleri, elektrostatik çekim yoluyla molekülün uygun kısmen yüklü bölümünü çözünen maddeye doğru yönlendirebildikleri için polar çözülen maddeleri ve iyonları çözebilir. Bu sistem stabilize eder ve her bir çözülen partikülün etrafında bir çözülme kabuğu (veya su durumunda hidrasyon kabuğu) oluşturur. Çözülen bir parçacığın hemen yakınındaki çözücü molekülleri çoğu zaman çözücünün geri kalanından çok daha farklı bir sıralamaya sahiptir ve farklı çözücü moleküllerinin bu alanına siyotaktik bölge adı verilir.[5] Su en yaygın ve iyi çalışmış polar çözücüdür, ancak etanol, metanol, aseton, asetonitril ve dimetil sülf oksit gibi diğerleride mevcuttur. Çözücü polaritesini sınıflandırmak için başka çözücü ölçekleri de kullanılsa da polar çözücülerin genellikle yüksek bir dielektrik sabitine sahip olduğu bulunmuştur. Polar çözücüler, tuzlar gibi inorganik veya iyonik bileşikleri çözmek için kullanılabilir. Bir çözeltinin iletkenliği, iyonlarının çözülmesine bağlıdır. Polar olmayan çözücüler iyonları çözemez ve iyonlar iyon çifti olarak bulunur.

Molekülleri polar olan kovalent bağlı moleküllerde hidrojen bağı vardır .Polar çözücüler, Protik ve Aprotik çözücüler olarak iki farklı grupta incelenebilir. Protik çözücüler, hidrojen bağı için gerekli kimyasal bağlara sahiptirler, bu sayede de hidrojen bağı oluşturabilirler. Aprotik çözücüler ise hidrojen bağı için gerekli olan kimyasal bağlara sahip değildir. Protik çözücüler, hidrojen bağlarını kabul eden çözücüleri çözebilmektedirler. Aynı şekilde, bir hidrojen bağını kabul eden çözücüler, hidrojen bağı olan çözücüleri çözebilmektedir. Su gibi çözücüler, hidrojen bağlarını kabul ederler. Protik çözücülerin su ile karışma isteği yüksektir. Bu yüzden en iyi protik çözücü sudur.[6]

Solventler(çözücü), maddeleri çözmek veya seyreltmek için kullanılan kimyasal sıvılardır. Solvayokromizm ise çözülen maddenin kimyasal yapısına ve fiziksel özelliklerine bağlı olarak gözlenir. Ayrıca farklı çözücülerin aynı çözünen madde ile nasıl farklı etkileşime girdiğini gösterir.

Çözülme Enerjisi ile Termodinamik Hususlar

Çözülme işlemi, yalnızca ayrılmış çözücünün ve katının (gaz veya sıvının) Gibbs enerjisine kıyasla, çözeltinin toplam Gibbs enerjisi azalırsa termodinamik olarak tercih edilecektir. Bu, entalpideki değişimin eksi entropideki değişimin (mutlak sıcaklık ile çarpılır) negatif bir değer olduğu veya sistemin Gibbs enerjisinin azaldığı anlamına gelir. Gibbs' in negatif enerjisi kendiliğinden bir süreci gösterir, ancak çözünme oranı hakkında bilgi vermez.

Çözülme, farklı enerji sonuçları olan birden fazla adımı içerir. İlk olarak çözünen madde için yer açmak için çözücüde bir boşluk oluşmalıdır. Bu, hem entropik hem de entalpik olarak elverişsizdir, etkileşimleri azalır. Çözücü molekülleri arasındaki daha güçlü etkileşimler, boşluk oluşumu için daha büyük bir entalpik cezaya yol açar. Daha sonra, çözünen bir parçacık kütleden ayrılmalıdır. Bu çözünen- çözünen etkileşimler azaldığı için entalpik olarak elverişsizdir, ancak çözünen parçacık boşluğa girdiğinde, ortaya çıkan çözücü-çözünen etkileşimler entalpik olarak elverişlidir. Son olarak, çözünen çözücüye karıştığında, bir entropi kazancı vardır.

Çözücü ile çözünen tanecikler arasındaki etkileşim, kendi tanecikleri arasındaki etkileşimden zayıfsa çözünme endotermik, kuvvetli ise de ekzotermik olarak gerçekleşir. Çözünme üç basamakta gerçekleşmektedir; ilk basamakta çözücü moleküller ayrılır, ikinci basamakta ise çözünen moleküller ayrılır. Bu iki basamak endotermiktir. Üçüncü basamakta da çözücü moleküller ve çözünen moleküller karışır. Bu basamak endotermik veya ekzotermik olabilir. Çözeltinin ısısı üç basamağın ısılarının toplamına eşittir.

Gazlar çözülürken gazın hacimdeki azalmaya bağlı olarak negatif çözelti entropisine sahiptir. Gazlar yüksek sıcaklıklarda daha az çözünmektedir.

Bir iyonun salınması için gerekli olan enerji, bir çözücü molekülü ile birleştirildiğinde enerjilerin arasındaki fark, çözeltinin entalpi değişimidir. Çözeltinin entalpi değişimi için negatif bir değer, çözünmüş bir iyonu ifade ederken, yüksek pozitif bir değer ise solvasyonun gerçekleşmeyeceğini ifade eder. İyon, pozitif bir entalpi değeri olsa bile çözülmesi mümkündür. Gerekli olan enerji ise iyon çözüldüğü zaman ortaya çıkan entropideki artıştan ortaya çıkar.

Çözücü ve çözünen etkileşimler, solvasyon sürecini elverişli hale getirir. Çözünenin farklı çözücülerde çözünmesinin elverişli olduğunu karşılaştırması için için transferin serbest enerjisini dikkate almak gerekir. Transferin serbest enerjisi, iki farklı çözücüde çözünenin seyreltik çözeltileri arasındaki enerji farkını ölçmeye yarar. Bu değer esas olarak çözünen ve çözünen etkileşimleri dahil etmeden solvasyon enerjilerinin karşılaştırılmasını sağlar.

Çözeltilerin termodinamik analizi modellenerek yapılmaktadır. Örneğin, suya sodyum klorür eklenirse tuz, sodyum ve klorür iyonlarına ayrışır. Gerçekleşen ayrışma için denge sabiti, bu reaksiyonun Gibbs enerjisindeki değişimi ile tahmin edilir.

Simülasyon çalışmaları, iyonlar ve çevredeki su molekülleri arasındaki solvasyon enerjisindeki değişimin, Hofmeister serisinin mekanizmasının altında olduğunu belirtmiştir.

Makro moleküller ve Montajlar

Çözülme (özellikle hidrasyon) birçok biyolojik yapı ve süreç için önemlidir. Örneğin, sulu çözeltilerdeki DNA ve proteinler gibi iyonların ve/veya yüklü makro moleküllerin çözülmesi, biyolojik işlevden sorumlu olabilecek heterojen düğümlerin oluşumunu etkiler. Başka bir örnek, protein katlanması, kısmen protein ve çevresindeki su molekülleri arasındaki etkileşimlerde olumu bir değişiklik nedeniyle kendiliğinden gerçekleşir. Katlanmış proteinler, hidrojen bağıda dahil olmak üzere katlanmış protein yapısındaki solvasyon ve daha güçlü molekül içi etkileşimlerin bir kombinasyonu nedeni ile katlanmamış duruma göre 5-10 kcal/ mol ile stabilize edilir. Suya maruz kalan hidrofobik yan zincirlerin sayısını, katlanmış bir proteinin merkezine gömerek en aza indirgemek, çözülme ile ilgili itici bir güçtür.

Solvasyon(çözülme) ayrıca ev sahibi- konuk kompleksleşmesini de etkiler. Birçok konakçı molekül, hidrofobik bir konuğu kolayca kapsülleyen hidrofobik bir gözeneğe sahiptir. Bu etkileşimler, ilaç dağıtımı gibi uygulamalarda kullanılabilir, böylece hidrofobik bir ilaç molekülü, bir ilacı çözündürmek için kovalent olarak değiştirmeye gerek kalmadan biyolojik bir sistemde teslim edilebilir. Ev sahibi-konuk kompleksleri için bağlayıcı sabitler, çözücünün polaritesine bağlıdır.

Hidrasyon, biyomoleküllerin elektronik ve titreşim özelliklerini etkiler.

Konuyla ilgili yayınlar

Kaynakça

  1. ^ Marat Andreev; Juan J. de Pablo; Alexandros Chremos; Jack F. Douglas;. "Influence of Ion Solvation on the Properties of Electrolyte Solutions". 22 Şubat 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Şubat 2022. 
  2. ^ Cambell, Neil. "Chemistry - California Edition" (PDF). s. 734. ISBN 9780132013048. 6 Ekim 2021 tarihinde kaynağından arşivlendi (PDF). 
  3. ^ Greenwood, Norman N.; Earnshaw, Alan. "Chemistry of the Elements (2nd ed": 823. ISBN 978-0-08-037941-8. 
  4. ^ "5". 19 Mayıs 2007 tarihinde kaynağından arşivlendi. 
  5. ^ Eric V. Anslyn; Dennis A. Dougherty. "Modern Physical Organic Chemistry". ISBN 978-1-891389-31-3. 22 Şubat 2022 tarihinde kaynağından arşivlendi. 
  6. ^ "Sıvı Çözeltiler - Çözelti Oluşumu - Çözünme Entalpisi". www.canlidershane.net. 19 Ocak 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Ocak 2021. 

İlgili Araştırma Makaleleri

Hidroliz işlemi suyu oluşturan hidrojen ve oksijen elementlerinin birbirinden ayrılması ile sonuçlanan bir işlemdir. Bazı kaynaklarda hidroliz, moleküllerin su ilavesiyle daha fazla sayıda parçacık oluşturması olarak da geçer. Hidroliz, su ile bir kimyasal bağın parçalanmasıdır yani bir kimyasal reaksiyondur. Hidroliz genel olarak suyun nükleofil olduğu ikame(yer değiştirme reaksiyonu), eliminasyon(organik reaksiyon türü) ve solvasyon (çözme) reaksiyonları için kullanılır.

<span class="mw-page-title-main">Çözelti</span>

Çözelti ya da solüsyon, iki ya da daha fazla maddenin herhangi bir oranda bir araya gelerek oluşturdukları homojen karışımdır.

<span class="mw-page-title-main">Çözünürlük (kimya)</span> katı, sıvı veya gaz halindeki bir maddenin bir çözücü içinde çözülme kapasitesi

Çözünürlük, belli bir miktar çözünenin, belirli şartlar altında, spesifik bir çözücü içinde çözünmesidir. Çözücü akışkan solvent olarak adlandırılır ve birlikte çözeltiyi oluştururlar. Çözümlendirme işlemi solvasyon olarak adlandırılır.

<span class="mw-page-title-main">İyon</span> toplam elektron sayısının toplam proton sayısına eşit olmadığı, atoma net pozitif veya negatif elektrik yükü veren atom veya molekül

İyon ya da yerdeş, bir veya daha çok elektron kazanmış ya da yitirmiş bir atomdan oluşmuş elektrik yüklü parçacıktır. Atomlar kararsız yapılarından kurtulmak ve kararlı hale gelebilmek için elektron alırlar ya da kaybederler. Bunun için de başka bir atomla ya da kökle bağ kurarlar.

<span class="mw-page-title-main">Kimyasal bağ</span> atomları birbirine bağlanmasını ve bir arada kalmasını sağlayan kuvvet

Kimyasal bağ, atomların veya iyonların molekülleri, kristalleri ve diğer yapıları oluşturmak üzere birleşmesidir. Bağ, iyonik bağlar'da olduğu gibi zıt yüklü iyonlar arasındaki elektrostatik kuvvetten veya kovalent bağ'larda olduğu gibi elektronların paylaşılmasından veya bu etkilerin bazı kombinasyonlarından kaynaklanabilir. Açıklanan kimyasal bağların farklı mukavemetleri vardır: kovalent, iyonik ve metalik bağlar gibi "güçlü bağlar" veya "birincil bağlar" ve dipol-dipol etkileşimleri, London dağılım kuvveti ve hidrojen bağı gibi "zayıf bağlar" veya "ikincil bağlar" vardır.

Hidrofili, bir molekülün hidrojen bağları kurarak suya bağlanabilme özelliğidir. Yunanca ὕδωρ hidor (su) ve φίλος filos (arkadaşlık) sözcüklerinden türetilmiştir. Bu özelliğe sahip moleküller su ve diğer polar çözücülerde çözünebilir.

<span class="mw-page-title-main">Amid</span>

Kimyada amid sözcüğü iki anlama sahiptir: - Birinci anlamıyla amid, bir azot atomuna (N) bağlı bir karbonil grubu bulunduran bir organik fonksiyonel grup veya bu gruba sahip bir bileşiktir. - İkinci anlamıyla amid, bir azot anyonudur.

<span class="mw-page-title-main">Denatürasyon</span>

Denatürasyon, protein veya nükleik asitlerin doğal yapısında mevcut olan sekonder, tersiyer ve kuaterner yapılarının bazı fiziksel ve kimyasal dış etkilerle bozularak primer yapılarına dönüşmeleri sürecidir. Canlı bir hücredeki proteinlerin denatüre olması, hücresel aktivitelerde bozulma ve belki de hücrenin ölümüyle sonuçlanır.

Elektrolit, iyonların hareketi sayesinde elektriksel olarak iletken olan, ancak elektronları iletmeyen ilenler içeren bir ortamdır. Su gibi polar çözücü içinde çözülmüş çoğu çözünür tuzları, asitleri ve bazları içermektedir. Çözünüm sonrasında; madde çözücü içinde eşit olarak dağıtılan katyonlara ve anyonlara ayrılmaktadır. Katı hal elektrolitleri de mevcuttur. Tıpta elektrolit terimi, çözünen maddeyi ifade etmektedir.

Makromolekül, küçük yapıtaşlarının yani monomerlerin polimerleşmesiyle oluşmuş çok büyük moleküler yapılardır.Örneğin amino asitlerin polimerleşmesiyle proteinler ; şeker, fosfat asidi ve azot içeren heterosiklik baz (purin/pirimidin) polimerleşmesiyle nükleik asitler oluşur.Makromolekül terimi biyokimyada üç büyük yapı olan nükleik asit, protein, karbonhidrat için kullanılır. Lipitler makromolekül sınıfına girmez, biyomolekül olarak tanımlanır. Makromolekül tanımı sentetik polimerler ve polimer olmayan büyük kütleli moleküller için de kullanılabilir.

<span class="mw-page-title-main">Ters osmoz</span>

Ters osmoz (RO) iyonları, istenmeyen molekülleri ve içme suyundan daha büyük parçacıkları gidermek için kullanılan hücre zarı olarak görev yapan bir su arıtma işlemidir.

Kristalleşme, bir eriyikten ya da nadiren direkt olarak bir gazdan, çökeltme yoluyla katı kristal yaratma sürecidir. Kristalleşme ayrıca, bir saf katı kristal fazının ortaya çıktığı büyük miktarda erimiş madde transferini içeren bir kimyasal katı-sıvı ayırma tekniğidir. Kimya mühendisliğinde kristalleşme bir kristalizör olarak ortaya çıkar. Kristalleşme bu nedenle kimyasal reaksiyon sonucu çökelme ile karşılaştırılınca, bir çözücü içindeki çözünen maddenin çözünebilirlik koşullarının değişmesiyle elde edilen bir çökelti görünüşündedir (durumundadır).

Moleküller arası kuvvet, komşu parçacıklar arasında etkili çekim veya itme kuvvetidir. Molekülleri bir arada tutan iç kuvvetlere kıyasla daha zayıftır. Örneğin HCI moleküllerinin içinde bulunan kovalent bağ, birbirine yeterince yakın komşu moleküller arasında mevcut olan kuvvetlerden daha güçlüdür.

<span class="mw-page-title-main">Faz (madde)</span> Fiziksel bilimlerde, bir faz bir malzemenin fiziksel özelliklerini esas olarak eşit bir şekilde madde boyunca dağılan bir sistemdir. Fiziksel özelliklerinin örneklerinden üç tanesi, yoğunluk içermesi , mıknatıslanma ve kimyasal bileşimi inde

Fiziksel bilimlerde faz; bir malzemenin fiziksel özelliklerinin her noktasında aynı olduğu bölgedir/alandır. Fiziksel özelliklerinin örneklerinden üç tanesi, yoğunluk içermesi, mıknatıslanma ve kimyasal bileşimi indeksi. Basit bir açıklama ile bir faz fiziksel olarak ayrı, kimyasal olarak yeknesak ve (genellikle) mekanik ayrılabilir malzemeli bir bölge olmasıdır. Bir cam kavanoz buz ve sudan oluşan bir sistemde, buz küpleri birinci faz, su ikinci faz ve suyun üstünde bulunan nem ise üçüncü fazdır. Cam kavanoz ise başka bir ayrı aşamasıdır. Faz terimi bazen maddenin hali olarak eş anlamlı bir şekilde kullanılabilir. Ancak bir maddenin aynı halde çok sayıda karışmayan fazı olabilir. Ayrıca, faz terimi bazen bir faz diyagramı için üzerinde sınır ile basınç ve sıcaklık gibi durum değişkenler açısından sınırı çizilmiş denge durumunda bir dizi oluşturmak için kullanılır. Faz sınırları gibi katı veya başka bir kristal yapısından daha ince değişikliğine sıvıdan bir değişiklik olarak maddenin organizasyon değişiklikleriyle ilgili olduğundan bu son kullanım durumuna eş anlamlısı olarak "faz" kullanımına benzer. Ancak, madde ve faz diyagramı kullanımların hali yukarıda verilen ve amaçlanan anlam terim kullanıldığı bağlamdan kısmen tespit edilmelidir resmi tanımı ile orantılı değildir. Fazın çeşitleri Farklı fazlar, gaz, sıvı, katı, plazma veya Bose-Einstein yoğuşma ürünü olarak maddenin farklı durumlar olarak tarif edilebilir. Maddenin katı ve sıvı formda diğer haller arasındaki faydalı mezofazlar.

Kimyada, koligatif özellikler, çözünen parçacıkların sayısının, mevcut kimyasal türlerin doğasına değil, bir çözelti içindeki çözücü moleküllerinin sayısına oranına bağlı olan çözeltilerin özellikleridir. Sayı oranı, örneğin molarite, molalite, normallik (kimya) vb. çözeltilerin konsantrasyonu için çeşitli birimlerle ilişkili olabilir. Çözelti özelliklerinin çözünen parçacıkların doğasından bağımsız olduğu varsayımı sadece ideal çözeltiler için doğrudur ve seyreltik gerçek çözeltiler için yaklaşık değerlerdir. Başka bir deyişle, koligatif özellikler, çözümün ideal olduğunu varsayarak makul bir şekilde yaklaşılabilen bir çözüm özellikleri kümesidir.

<span class="mw-page-title-main">Yüksek performanslı sıvı kromatografisi</span>

Yüksek performanslı sıvı kromatografisi bir analitik kimya yöntemidir. Karışımlardaki bileşenlerin, ayrıştırılmasında, nitelik ve niceliklerinin belirlenmesinde kullanılan bir analiz tekniğidir. Bu teknikte pompalar ile pompalanan yüksek basincli sıvı faz aracılığıyla taşınan analitler, kromatografik kolona ulaşır. Kolona ulaşan analitler, kolon ile farklı şekillerde etkileşip, farklı zamanlarda detektöre ulaşırlar. Burada, kolon katı bir adsorbent maddeyle doludur ki bu maddenin özellikleri sayesinde kromatografik ayrışma gerçekleşir.

Kimya ve biyokimyada ayrışma, moleküllerin (veya tuzlar veya bileşikler gibi iyonik bileşiklerin) atomlar, iyonlar veya radikaller gibi daha küçük parçacıklara ayrıldığı genel bir süreçtir. Örneğin, bir asit suda çözündüğünde, bir elektronegatif atom ile bir hidrojen atomu arasındaki kovalent bir bağ, bir proton (H+) ve bir negatif iyon veren heterolitik fisyon tarafından kırılır. Ayrışma, birleşme veya rekombinasyonun tersidir.

Çözgen-iter kuramı (yb.Solvophobic) polar olan ve polar olmayan çözücüler arasında etkileşimi açıklamaya çalışır.

<span class="mw-page-title-main">Emilim (kimya)</span> kimyasal süreç

Kimyada absorpsiyon veya emilim, fiziksel veya kimyasal fenomen veya atomların, moleküllerin veya iyonların bir yığın fazına giriş sürecidir. Bu adsorpsiyondan farklı bir işlemdir, çünkü adsorpsiyonda moleküller yüzey tarafından alınmasına rağmen absorpsiyona (emilim) uğrayan moleküller hacim tarafından alınır.

<span class="mw-page-title-main">Sulu çözelti</span> çözücünün su olduğu çözelti

Sulu çözelti, çözücünün su olduğu bir çözeltidir. Çoğunlukla kimyasal denklemlerde ilgili kimyasal formüle (aq) eklenerek gösterilir. Örneğin, sodyum klorür (NaCl) olarak da bilinen sofra tuzunun sudaki çözeltisi Na+(aq) + Cl-(aq) şeklinde gösterilir. Aqueous kelimesi (aqua'dan gelir) suya ait, su ile ilgili, suya benzer veya suda çözünmüş anlamına gelir. Su mükemmel bir çözücü olduğundan ve aynı zamanda doğal olarak bol bulunduğundan, kimyada her yerde bulunan bir çözücüdür. Deneylerde çözücü olarak sıklıkla su kullanıldığından, çözücü belirtilmediği sürece çözelti kelimesi sulu bir çözeltiyi ifade eder.